Early exercise decision in American options

with dividend, stochastic volatility and jumps

- ONLINE APPENDIX -

Appendice A provides the proof of Propositions 1 of the main paper. In Appendix
B, we provide the analytic form of €;(y). In Appendix C, we characterize the space
translation invariance property of the transition matrices and we describe how we take
advantage of this property in the implementation of the algorithm. Appendix D compares
the recursive projections method with recent numerical technique which can accommo-
date discrete dividends, assuming a Black-Scholes dynamics for the underlying security.
These methods are the binomial tree and its improved version provided by Vellekoop and
Nieuwenhuis (2006), and the simulation least square approach method of Longstaff and
Schwartz (2001). We also discuss the new duality approach method of Haugh and Kogan
(2004), Rogers (2002), and Andersen and Broadie (2004). Appendix E gives a detailed
description of the data and the of calibration procedure, as well as the results of the
calibration with a breakdown per stock. Appendix F provides further evidence on the
importance of a correct modelling of the dividend as a discrete cash flow when comput-
ing the early exercise boundary. In Appendix G we describe the relative advantages of

recursive projections and ADI schemes in solving different pricing problems.



Appendix A. Proofs

We prove Proposition 1 in three steps. Before stating starting the proof, we start by

providing some definitions that we will use extensively.

Vi(y,w, T) = Z / do, / A0V (61,02, T)e;(61)e,(02)e; (e, (w) & Z Vicej(y)e (w)
(1)

Gzl(yi,wp,tyﬂU,T) = Z /del/d92G2(yi7€p7t; 01,02, T)e;(01)eq(02)e;(y)eq(w) (2)

def Z G2 lp]q )

Equations (1) and (2) define the coefficients {Vj; }jezgen and {Gy;0}jez,gen of the or-
thogonal projections V4 (y,w,T) and Gy (y;, wp, t;y, w,T). Due to the orthogonality of
the orthonormal sets {e;(y)};ez and {¢,(y)}4en, we obtain the following:
def
vlp /dy/de (yi, wp, t;y, w, TV (y, w, T) ZG2 ivja ]q (3)
Jq
Moreover, we denote the following approximation by v} (¢) :
vy, (t) =V AyAw Z Lo (yi, wp, t; Y5, we, T)V (y;, wq, T). (4)
Jq
Equation (4) gives approximation of the continuation value at ¢t when the input at time
T is a true value. Most of the times, in practical applications, V(y,w,T) = H(y,T). In
the last case, vi*p(t) is the approximation of the price at ¢t of a European contract.
Let w, and w, be the bounds of the support of size Aw of the indicator functions
{€4}qez centered on the {w,},ez grid points. In the following, we repeatedly use the

second order Taylor expansion of bivariate functions. Let x (&1, &2) be twice differentiable



in the two variables & and &. Then, for & € [gj,gj) and & € [w,, W,):

X(€1,62) = X (Y5, wq) + O X (Y5 we) (§1 — Yj) + O x (Y, wy) (§2 — wy)

B e (E,E)(E — )€ — w) + 5086 E)(6 — 1) + 30Ex(, E) 6 — )
We then have the useful expansion:
/d&/ dex x(61.62)
(v dudu 5 [ [ de [ - ) + (6. (e~
= X(y5, wg) AyAw + O(A?), as A — 0, (5)

because, since y; and w, are the centre points of the integration interval, the integrals of
the other terms of the expansion vanish.

The proof of Proposition 1 is organized in the following four steps: 1) Lemma 1 tells
us that what matters for the convergence properties in Equations (14) and (15) of the
main paper is the rate of convergence of the approximated continuation value to the true
continuation value. 2) In Lemma 2, we show that the computed continuation value v} (t)
verifies v (t) = v (t) + O(A®). 3) In Lemma 3, we prove that vy() = V(y;, wp,t) +
O(A?), which entails that vy, (t) = V(yi, wp, t) + O(A?), which proves Proposition 1 in
the European option case, i.e. Equation (14) by setting t = ¢, 1. 4) In Lemma 4, we
conclude by proving the recursive formula of Equation (15) of the main paper. The
summations on the indices j and ¢ are understood to be from —oo to +oo and from 1 to

400, respectively.

LEMMA 1. Let Ay, Ay and asy be real numbers such that A; and A, are true quantities

and as is an approximation of A,. Then, we have the following inequality:

’Hla,X{Al, CLQ} — maX{Al, AQ}’ S |CL2 - AQ‘ (6)



Inequality (6) shows that the rate of convergence of max{A;, as} to max{A;, Ay} is given
by the rate of convergence of ay to As.

Proof of Lemma 1:
Proof. We must analyze four possibilities.

1. if A} > ap and Ay > A, then |max{A;, a2} — max{A4;, As}| = 0.
2. if Ay < ag and A; < A, then | max{A;, as} — max{A;, Ay }| = |as — As|.

3. if A} > ay and A; < Ay, then we have | max{A;, as} —max{A;, As}| = |A; — As| <

lag — As|, because A; lies between ay and As.

4. if Ay < ag and Ay > A,, then we have | max{A;, as} — max{A;, As}| = |ag — A;| <

lay — Ay, because A; lies between ay and As.
Gathering points 1-4 yields inequality (6). O

LEMMA 2. The approximation error between v;;(t) and v}, (t) defined in (3) and (4)

satisfies:

Proof of Lemma 2. We must bound the difference:

Z ‘ V AyAU) FQ(yiv Wp, t7 Yj, Wy, T)V(ij Wgq, ) Gézqu‘/;é
Jq

By Fourier isometry, we have:
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Then, we deduce:

Z ’ V AyAU) FQ(yiywpu ta Y;, Wq, T)V(yj7wq7 ) Gé_lp]q 7q

Z ‘VAyAw(Z Go(i, Wy, t; Ay iz, T)Ej (=N )éq(—ﬁz)AAA/f)V(yj,wq,T)

re=—0oQ

(7)
//d)\d/{GQ yl,wp,t )\ K, T)GJ //d91d92 91,92, )63(91)6,1(92))‘
The functions Gy(y;, wy, t; A, &, T), é;(—r) and &;(=\) are twice continuously differen-

tiable. Moreover, let A = +/Ax2+ AX2. Using the property (5) with y(\, k) =

G (i, wp, t; A, 5, T)é;(—N)é,(—k) we have that:

//d)\d/f G (i, Wy, t; A, 5, T)E;(—=N)E,(— k) + O(R%), (8)

D Goli, & ts Apy 5z, T)EG (= A )Eg(—h2) ANAK as A — 0.

T,2=—00

Exploiting the continuity property of V(y,w,T), we obtain:

‘\/ AyAU) /d(gld@QV(Ql,92,T)€j(91)€q(92) — A’yAU} V(yj,wq,T) (9)

/ do, / do, |V

It then suffices to substitute Equation (9) and (8) into (7), and to choose A = O(A),

(01,02, T) — V(y;,w,, T)| < AyAwC’é:O(AQ), as A — 0.

to prove the statement of Lemma, 2.

LEMMA 3. The following equality holds:

U-J'(t) = V(yi,wp, t) + O(éz), as A — 0.



Proof of Lemma 3. We study the following difference:

V(yipwpa - //dydeQ ?/szpat Yy, w, T y7w T ZG2 ipjq ]q (10)
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We show that both terms in the right-hand side of (10) are equal to

> ig G2(is wy, Ly, we, TV (v, we, T) AyAw + O(A?). We start by the generic term of

the first summation. By applying (5) and (9):

‘/ dy/ dw GZ(yivaat;yawaT)V(yawaT) - GQ(yiawp>t;yjawq>T)V(yjawan)’ S
Y; Wy
Y, Wq

/ dy/ dw GQ(yivwpvt;y7w7T)|v<y7w7T> - V(yﬁwqﬂT)‘

Y; Wy

Y Wq
+ V(yj7wq’ T)/ dy/ dw ‘GQ(y’Lv wp7t; y7w7T) - GQ(y’iawpa ta Yj, Wy, T)‘

Y; Wy

< sup GQ(yiawIHt;y?waT)O(éQ) + sup 822G2(yi7wp7t;yawaT)O(é?))-
yely ;) yely;»;)
wEw, W) we[wq W)

¢e{y,w}

We can easily check that the generic term of the second summation in Equation (10)

equals:

1
AyAw [Gg(yi, Wy, 5y, wg, T) AyAw + O(A*)] [V (5, wq, T) AyAw + O(A?)]

- GZ(yi7 wpa t; yja qu T)V(y], wqa )AyAw + G2(y27 wpat y]7 wqa )O(A2)
Then:

|V(yi7wp7t) _Uzt(t” S Z sup GQ(yiawp7t;y7w’T)O(é2)-
j7q ye[gjv?j)
we[ﬂq’ﬁq)

Because G(y;, wp,t;y,w,T) is a density, the above summation is finite, and it proves

Lemma 3. Combining the results of Lemma 2 and Lemma 3, we have shown that the



continuation value vy (t) = V (y;, wp, t) + O(A?), that is, we have proven the convergence

of the algorithm in the European case.

LEMMA 4. Let v;,(t;) be defined as in Equation (16) of the main paper, with [ =
1,...,L — 2. Then v,(t;) converges to the true price V(y;, w,,t;) at a rate of the order

O(AY).

Proof. We start by showing the convergence of v;,(t1_2) to V(y;, wp,tr—2). Because of
Lemma 1, we only need to prove the convergence of the approximated continuation value
at t = t;_o to the true continuation value at ¢ = t;,_5. We consider a contract evaluated

at two dates {t;_o,t;_1} prior to maturity, t;, = T, namely ¢, o < t;_1 < T. Then:

Z (Y, wp, tr—2; Yj, W, tr—1)viq(tr—1)/ AyAw

Jq
= Z F(yzu Wy, th2; Yj, Wy, tL,1> [V(yj7 Wyq, thl) - V(yju Wy, thl) + (qu(thl)} \% AyAU)
Jq
= Z L(ys, wp, tr—23 Y5, Wa, t—1)V (Y, Wy, tr—1)/ AyAw
Ja
+ Z D (yi, Wy, tL—2; Yj, Wa, tr1) [Vjg(t—1) = V(yj, wg, t1) | v/ AyAw.
Jq

The quantities {V (y;, w,,t1—1)}jezpen are exact values; thus it follows from Lemma 2

and Lemma 3 that:

Z (i, Wy, tr—2; Yj, we, tr—1)V (Y5, We, tr—1) v/ AyAw = V (y;, wg, tr—2) + O(A?).

jq
Again, from Lemmas 1 and
3, it follows that vj4(tr—1) = max{v},(tr—1), H(y;, wg, tr—1)} = V(y;.tr—1) + O(A?).

Then:

Z L(yi, wp, t—2; Yj, Wq, tr—1) [qu(tL—1) — V(y;, wg, tL—l)} VAyAw

Jjq

< sup [vjg(t-1) = V(g5 w.tp)|e 72 (14 O(A%)) = 0(4%).
J



In the last inequality, we take advantage of the fact that

Zf(yi, Wy, tr—2;Yj, We, tr—1)V/ AyAw = e_r(tL*Q_thl)(l + O(ég)),

Jq
because G(z,&,t;_o;y,w,tr—1) is the deterministic discount factor times a density.
Indeed, the approximation operators built on indicator functions are shape pre-
serving, (see Dechevsky and Penev (1997) and Cosma et al. (2007)), and the
property of integration to one of a density is preserved. The O(A?’) term is
the speed at which the sum 37 T'(yi,wy, tr2;y;,w,, tr—1)v/AyAw converges to
[ dydw qufdeﬁgG(yi,wp,tL,Q;«91792,TL,l)ej(Ql)eq(Qg)ej(y)eq(w), and can be checked
using the same series expansions techniques as in the proof of Lemma 2. It read-
ily follows that v;(t,—2) = V(yi,tr-2) + O((Ay)?). The extension to prior dates
ty=tr 3, t; =tr_4,..., immediately follows by recursively applying the same arguments
used above.

O

The proof of Proposition 1 can be performed in a more general framework, and for
basis sets other than indicator functions. The key requirement is that only a finite
number of basis functions contribute to the the approximation of a function at a given
point (y;, w,). Examples are orthonormal wavelets, non-orthogonal and bi-orthogonal
wavelet bases, and B-splines. The use of these function bases may be useful when we
need a basis that better adapts to the specific geometry of more complicated pricing

problems.



Appendix B. Analytic Form for ¢;(y)

Let e;(y) be the indicator function of the interval [gj, ¥;), normalized according to the

Ly norm. Then the Fourier transform é;(\) is given by the following:

2 Yty Yty Y~ Y.
&;(\) = ———— [cos [ ==\ ) 4 esin| =N ) | sin[ ===\ ) /A
! T 2 2 2

Y~ Y,

2 . sin (Ay)\)
EBWAY [cos(yj)\) + Lsm(yj)\)} —

Appendix C. Space Translation Invariance Property of

Transition Matrices

The transition matrix I's(y;, wy,t;;ti41), as defined in Equation (11) of the main
paper, is a function of the conditioning values (y;,w,). The following two remarks
greatly simplify and speed up the computation of the transition matrices. First, in
Equation (17) of the main paper, only Gg(yi,wp,tl;tlﬂ) actually depends on y; and
wp, which means that ¢ and ¢ only need to be computed once. Second, the evolu-
tion of the asset prices logarithm in the stochastic volatility model has the property
that increments are independent of the price level. Let My(log(x),&, t;1log(y), w, tiv1) =
Go(z, &, t;;y,w,t;11)y be the bivariate state price density as a function of log(y)
and let Mg(log(x),g,tl;)\, K,t;+1) be its Fourier transform. Then, if we sample the
transition densities and the payoff function on an equispaced grid in the log(y)
scale, i.e. {log(y)i}i=1,. n, we can rewrite (17) by defining the N x W matrix
Wy ((log(y))i Wy, ti; tre1) = @' Ma((log(y))i, wp, ti; tie1 )/DyAw, where the R x Z ma-
trix Mg((log(y))i, Wy, t; ti41) corresponds to the R x Z matrix C}g(yi, wy, t1;ti41). Equa-
tion (18) becomes: v, (t;) = max{H (e!eW)i ¢,), Wy ((log(y))i, wy, ti; tis1) : va(tizr) },

where v;,(t;) is now the approximation to the value V(e(®e®)i ), ;). We have that



Wy 0 ((log(y))ive, wp, ti; tixr) = o i_cq((log(y))i, wy, ti; tip) for ¢ € Z, provided that
0 < i4+(¢ < N. We refer to this property as to the space translation invariance property of
transition matrices. In implementations, we compute Wo((log(y)):, wp, ti;t;4+1) only once
for at-the-money values of ((log(y)):,w,), and reconstruct the other transition matrices
exploiting the space translation invariance property. Again, this feature exemplifies the
computational advantage of direct sampling based on equally-spaced grids.

If we have to take into account discrete dividends, as in Section 3.3 of the main paper,
at each dividend date ¢, we must compute the continuation value of the option at the grid
{(log(e°e®i —d), w,) }iz1.. Np=1...w- If the original grid {(log(y):, w,) }i=1. . .Np=1.. .w has
a regular step in the log(y); direction, then this is no more true for the grid {(log(e'*8®): —
d),wp) i1, Np=1,..w- We can still take advantage of the space translation invariance of
the transition matrices because the state price density Ms(log(z), o2, tn;log(y), w, thy1) is
a function of log(z) and log(y) only through the difference log(y) —log(x). Let us perform

the following change of variable:

Vv(m - da Ut27 th) = // leg(y)de2<lOg(.’B B d)> 0t27 7% IOg(y)a w, th+1)v(elog(y), w, th+1>
X
= / / dlog(y)dwMs (105-’;(%), a7, t;log(y) + 10g(m)7w, th+1> V(€5 ™ w, ty44)

= //dlog(y)dez <10g($),0t?,th;log(y),w,th+1>V(e(log(y)HOg(l_d/x)),w,th+1).

For pricing by recursive projection, this procedure translates into the relationship:

vip(ty) = maX{H(elog(y)’?,th),\IIQ(log(y)i,wp,th;thH) : ﬁQ;d(thH)}, where Ug.4(tp41) are

1—d/e1°g(y)i))7wq,th+1) obtained by a

approximations of the value function V (el°s®)s+los(
second-order interpolation of the elements of wvy(tsi1). We can still compute the

Wy (log(y)i, wp, th; the1) matrices on the regular grid {(log(y):,w,)}iz1.. Np=1,. w, and

we can still use the space translation invariance property to speed up computations.
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Appendix D. Comparison with Other Methods

As a first numerical example in the Black-Scholes framework, we compare the con-
vergence speed of a binomial tree and of the recursive projections method in pricing an
American call option on a dividend-paying stock!. Two popular modeling choices for the
dividend payment are a known cash amount d or a known dividend yield r4. The latter
is computationally friendly because it leads to a recombining tree. The known dividend
amount assumption does not lead to a recombining tree, and a new tree is originated at
each node following an ex-dividend date, increasing the numerical complexity of the prob-
lem. The work of Vellekoop and Nieuwenhuis (2006) provides a recent enhancement of the
classical binomial tree method which incorporates discrete dividend payments through an
approximation of the continuation value of the option at the ex-dividend dates. This new
algorithm has been proven to be substantially faster than the standard non-recombining

binomial tree, and is therefore a reliable benchmark for this simulation exercise.
|Figures 1 and 2 about here]

Figure 1 compares the convergence speed of the enhanced binomial tree and that of the
recursive projections method in pricing an American call option on a discrete dividend-
paying stock. The option has a maturity of 7" = 3 years and a dividend d = 2 is paid
out at the end of each year. Other parameters, namely the interest rate, volatility and
strike price, are set equal to r = 0.05, 0 = 0.2, and K = 100, respectively. We compute 3
prices: at-the-money, in-the-money and out-of-the-money, corresponding to Sy = 80, 100,
and 120, respectively. The true values of 7.180, 18.526, and 34.033 are obtained with
10000 time steps in the binomial tree. The graphs show that, across the three different
values of Sy, the recursive projections enjoy an increase of speed of approximately a
factor 10 for a comparable level of precision. The speed advantage is even larger if we

consider that a new tree is needed for each value of Sy. Instead, the recursive projections

TAll of the codes are written in C+-+. The codes are available from the authors upon request.
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method delivers the entire value function v(0) at once in a straightforward manner.
This feature is particularly useful in computing Greeks through numerical differentiation.
As an additional benchmark, Figure 2 displays the convergence speed of the recursive
projections jointly with the one of a standard non-recombining tree. Even though the
non-recombining tree is known to be an inefficient method, it is still used as a common
reference point in the literature, and we show this graph for comparison purposes. We
can see that the gain of speed of the recursive projection is of the order of 10*. As an
aside, for Sp = 100, if we approximate the known constant dividend d = 2 with a known
continuous dividend yield? r; = 0.013, then a binomial tree with 10000 steps delivers a
value of 18.213 instead of 18.526, with a relative error of approximately 169bp. This error
is far above observed bid-ask spreads. This simple example points to the importance of
using models that can explicitly address discrete dividends in empirical analysis, instead
of using approximations based on continuous dividend yields. Moreover, we have chosen
a sampling scheme that is equivalent to projecting the payoff function on a set of basis
functions that are well localized, in the sense that their support is a closed interval.
The implication is that local features of the payoff function, such as a discontinuity,
are described by the coefficients relative to one or at most two basis functions, those
lying next to the discontinuity. This description avoids a noisy approximation induced
by spurious oscillations when projecting discontinuities on basis functions defined on the
entire domain, such as the Fourier sine-cosine basis or the Hermite polynomial basis. From
a computational perspective, this property translates into an accurate approximation
even for payoffs with strong discontinuities, such as a digital payoft H(S;,, ;) = I, in
a Bermudan digital call option. The discontinuity may introduce noise at most in the

coefficient relative to the indicator function of the interval in which the discontinuity is

2The yield is obtained by considering the dividends paid at ¢t = 1 and ¢ = 2 only, because the dividend
paid at ¢ = 3 has no impact on the price of the option. Considering a dividend yield of 2% would provide

an option value of 16.857, which is a much larger error.
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located. The noise is completely eliminated if we make sure that that the strike value
lies in between two consecutive grid points, so that the discontinuity is at the boundary
between two consecutive indicator functions. In this numerical example, we use the
standard binomial tree as a benchmark, since the method of Vellekoop and Nieuwenhuis
(2006) provides no advantage in the absence of dividends. Figure 3 (see the caption of the
table for the values of the parameters of the example) shows that the binomial tree has
problems capturing the discontinuity in the payoff function. Consequently, an extremely
slow convergence of the tree method for at-the-money Bermudan digital call options is
yielded. The recursive projections are also at least an order of magnitude faster in pricing
the out-of-the-money options. The apparent non-monotonic convergence of the binomial
tree for Sy = 120 is because both methods achieve a quick convergence for in-the-money
options, and the graph only displays small oscillations on the order of half a basis point

around the true value.
|[Figure 3 about here]

Another group of numerical methods that can be applied to the same pricing problems
are the Monte-Carlo simulation methods. They can handle both discrete dividends and
multidimensional settings. The least-squares approach of Longstaff and Schwartz (LS)
provides a simulation based algorithm to price American options, via a lower bound for the
true price. This lower bound is then coupled with an upper bound in the implementation
of Andersen and Broadie (2004) of the duality approach of Haugh and Kogan (2004)
and Rogers (2002). In their numerical results, Andersen and Broadie (2004) show that
the gap between the lower bound and the upper bound can be very tight, making the
algorithm appealing. In Figure 4, we compare the speed and accuracy of the LS algorithm
with our method in the same three examples as before. Our algorithm is faster than the
LS method by at least four orders of magnitude. Intuitively, the main advantage of our

algorithm is that it needs to evaluate the option only when it can be optimal to exercise
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it. In the case of a call option, this happens just before the payment of the dividends.
In this specific example, when there are only two dividend payments, our algorithm
computes the final price with only two recursions. On the contrary, every simulation
based method needs to simulate the entire trajectories, increasing the computation time.
The duality approach implementation of Andersen and Broadie (2004) builds on the LS
algorithm and necessitates additional simulations at each potential exercise date to build
the upper bound for the price, thus further increasing the numerical complexity and the
computation time. Given the results obtained for the LS algorithm, we can confidently
conclude that our algorithm is also faster than the duality approach in pricing a call

option written on a stock which distributes regular discrete dividends.

Appendix E. Data and Calibration Procedure

We conduct our analysis over the period January 1996 - December 2012. We use all
short term call option series with maturity less than six months written on the dividend-
paying stocks belonging to the Dow Jones Industrial Average Index (DJTA) at the end of
2012. According to other studies (Barraclough and Whaley (2012); Pool et al. (2008)),
we proxy for the timing of the expected dividends paid during an option life time with
the actual distribution time of dividends, and we proxy for future dividends amounts by
using the last known dividend amount. We exclude from our sample the data relative
to periods in which the underlying stock experiences an unusual corporate event that
may alter the option valuation, such as special dividend distribution, new equity issue,
or spin off. To ensure the exclusion of the effects of such corporate events and their
anticipation by investors from our sample, we do not consider the data starting from nine
months before the special corporate event up to nine months after. After applying these
exclusionary criteria, we obtain a dataset of 1701 days before ex-dividend to analyze.

For each stock and at each day before an ex-dividend date, we separately calibrate the
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parameters of the models of Black-Scholes, Merton, and Bates on a calibration sample
by minimizing the implied volatility mean squared error (IVMSE) as IVMSE(x) =
S (0i—0i(x))?, where x is the set of parameters to estimate, o; = BS~(Cy, T, K, S, 7)
is the market implied volatility and o;(x) = BS™*(Ci(x), T}, K, S, r) is the model implied
volatility, where C;(x) is the model price of the American option i. The choice of this loss
function follows the argumentation of Christoffersen and Jacobs (2004). The calibration
made on implied volatilities is more stable out of sample, in particular for the stochastic
volatility model. We infer the model specific parameters of the underlying process by
calibration on a set of reliable and liquid option data. More specifically, the calibration
sample consists of contracts traded in the four months preceding the calibration day,
that have no dividend payment in their remaining life. These contracts can be treated
as European. In this way we can take advantage of the semi-closed pricing formula for
European options. We then apply some exclusionary criteria: we do not consider options
that should be optimally exercised, because their price is equal to the exercise proceeds
for mostly all values of the parameters and the minimization problem is ill posed. We thus
consider the option quotations that strictly satisfy the following inequality: C' > S—K; we
do not consider option data with a price less than 3/8 of a dollar, in order to avoid effects
due to price discreteness; we do not consider options with volume equal to zero as the non-
traded quoted prices are not reliable prices; finally, we do not consider options which are
deep in-the-money or deep out-of-the-money, as they can destabilize the minimization
problem. Following Bollen and Whaley (2004), a call option is classified deep in-the-
money if its delta is larger than 0.875. Symmetrically, a call option is classified deep out-
of-the-money if its delta is less than 0.125. After applying these criteria, the calibration
sample at each day before the ex-dividend date consists of 110 call options on average.
The models of Black-Scholes and Merton are one-dimensional and do not present any

particular numerical issue; so we simply calibrate all their parameters on the calibration
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sample described above. The Bates model, on the contrary, is two-dimensional. There-
fore, in addition to the calibration of its parameters, it needs the calculation of the daily
instantaneous spot volatility oy, which is a non-observable variable. It is also a more
sophisticated model with its seven parameters. In order to efficiently calibrate it, we use
a procedure where we take into consideration the specific role of the parameters on the
implied volatility surface. To the best of our knowledge, we are the first academic work
in which the Bates model is calibrated on single stocks. Hence we borrow some intuition
for our new calibration procedure from the practitioners studies of Hagan et al. (2002),
and West (2005). According to these studies, each parameter of the volatility dynamics
has a specific impact on the term structure of the implied volatility smile. The volatility
of volatility w rules the convexity of the smile while the correlation parameters p rules
the slope of the smile. In the two works cited above, the authors consider a pure diffusive
process for the volatility, ignoring the mean reversion part. They show that for short term
options this reduced model provides a very good fit to the data. Indeed, for the short
term options the value of At is very small compared to the possible values of AW and
the dynamics of the stochastic volatility process is driven mainly by the Brownian motion
part. The role of the mean reverting part of the stochastic volatility process of Heston
is to reproduce that implied volatilities of long maturity options are less volatile than
those of short maturity options and are usually closer to the long run average volatility.
The mean reverting part avoids that the volatility increases indefinitely with maturity.
In principle, for our application on short term options, only the diffusion component of
the stochastic volatility is sufficient to give a good fit. However, as we want to employ
the full dynamics of the Bates model, we calibrate the mean reversion and the long term
volatility parameters as well on long term options.

To this end, we calibrate the parameters in two steps: first, we calibrate the jump pa-

rameters together with the volatility of volatility and the correlation on the short term
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options calibration sample described above. In this optimization, we do not consider the
mean reversion part of the stochastic volatility. Then, as a second step, we calibrate
the mean reversion and the long term volatility on a sample of two long term options,
while keeping the other parameters fixed to those obtained in the previous step. For the
calibration, we use the two long term options with the highest trading volume among the
long term options with maturity between ten months and two years which were recorded
in the four months before the calibration. In this long term calibration, we use as objec-
tive function the minimisation of the price percentage mean squared error instead of the
implied volatility mean squared error. As the long term options have dividends during
their life and their American price differs from the European one, we cannot recover the
implied volatility in the usual way. If we had calibrated the long term volatility and the
mean reversion on the short term options directly, we would have obtained an unreason-
able high value for the mean reversion and an unreasonable low value for the long term
volatility. This spurious effect is due to the very high convexity of the short term smile
combined with the drift part of the stochastic volatility dynamics having little or null
impact on the prices of short term options, as explained before.

For the calculation of the non-observable daily instantaneous spot volatility oo(t),
we follow the result of Medvedev and Scaillet (2010). We use the time series of the
one month (or close to) European at-the-money implied volatility as proxy for the spot
volatility. For the days considered in the calibration sample we have European options by
construction. In addition to these days, we need as well to compute the value of o¢ on all
days before the ex-dividend dates in order to price options and determine which options
should be exercised. On the day before the ex-dividend date, however, all options have
a dividend during their life, as the first dividend is paid the day after. In principle there
are no European options available. In order to make it possible to calculate oy on the

day before the ex-dividend date, we consider as European the options which should not
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be exercised and which have only the dividend paid the following day left during their
remaining life. These options are not European only because they have an early exercise
possibility until the dividend is paid. However, as the dividend is paid the following day
and these contracts are outside the early exercise region, the early exercise premium is
nearly zero and the price of the American option almost coincides with the price of an
European option. In the same spirit, Bakshi et al. (2003) extract the European implied
volatility from the American options prices, and they show that the difference between
the Furopean implied volatility and the American implied volatility is negligible and
within the bid-ask spread. By employing the same approximation, we calculate oy at
each day before the ex-dividend date as the average of the European implied volatility
of the at-the-money options that should not be exercised with maturity one month (or
close to).

The results of the calibration with a breakdown per stock are presented in Table 1.
We note that the calibrated values of the parameters are homogeneous among stocks, and
take sensible values in line with other studies made on index options (see Bakshi et al.

(1997)).

Appendix F. Correct Modelling of Dividend

In this section, we provide further evidence on the importance of a correct modelling
of the dividend as a discrete cash flow when computing the early exercise boundary.

The setup is the same as in Section 4.1 of the main text. There are two dividends
to be paid over the remaining life of the option, which is 6 months. One is to be paid
immediately (¢ = 0), the second in 3 months (¢ = 0.25). We compute the early exercise
boundary by i) correctly taking into account that the dividends are discrete, and ii) by
using the “escrow dividend” approximation, that is we price the contract at t = 0 as if

it were a European option, with the continuation value after the first dividend payment
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not being computed at Sy — d, but at Sy —d — d-e ") We compute the early exercise
boundary under the three models (Black-Scholes, Merton and Bates), with the following
representative parameters: A =95, u; =0, 05 = 0.2, opypr = 0.2, 0pg, 09 = 0.2, w = 0.1,
orr = 0.3, 3 =4, p=—0.5,r = 0.05. Figure 5 displays the results of our numerical study.
We call S}, the early exercise boundary computed under assumption i), and Sk the one
under assumption ii). The two boundaries S% , and S%, coincide after the dividend at
t = 0.25 is paid out, since there are no more intermediate cash flows before maturity, and
the continuation value is in both cases the one of a European call with a time-to-maturity
of 3 months. At ¢ = 0, the two boundaries are different, with Sp, < S7% ;. This means
that an investor basing his exercise decision on the approximation S ,, may suboptimally
decide to exercise the option at ¢ = 0, if S;, < So < S} . He would then incur a loss
given by C(Sy —d,0) — (Sp — K), where C(Sy — d,0) is the correct price of an American
option, computed at the stock value Sy — d. The upper bound for the loss coming from
the escrowed dividend approximation is reached exactly when Sy = Sp, 5. In this case, the
following formulae give the maximum percentage loss at ¢ = 0 under the three modelling

environments considered and with the model parameters given above:

CBS(SE,BS) B (SE,BS - K)

DI = = 0.63
Hoss Cps(SE ps) g
CMRT(SE MRT) - (SE MRT — K)
DL = ! . — 048
AMRT Cyrr(Sp arrr) %
C S7 — (5% - K
DL%BTS _ BTS( E,BTS) ( E,BTS ) _ 1‘14%’

CBTS(SE,BTS)
where we have suppressed for readability the dependence from time, and where the indexes
BS, M RT, BTS mean that we have computed the relevant quantities under the Black
Scholes, Merton and Bates models, respectively. The investors can lose up to 1% of the
market value of their option if they exercise according to the wrong boundary.

We finally check in our database if there are situations in which the stock reaches

the value Sp,, but not 5%, on the days before the ex-dividend dates. We find that this
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occurrence does happen, and not sporadically. For example, on May 10th, 2006, the
Dupont stock closes at 45.71 dollars. The call option with K = 30 and 7" = 0.45 should
not be exercised if the continuation value is computed correctly, but the option should be
exercised if the continuation value is approximated with a European price. In this case, if
an investor exercises his option wrongly, he will suffer a loss given by: DL%ps = 0.07%,

DL%yrr = 2%, DL%prs = 0.06%.

Appendix G. Comparison with Finite Difference

Methods

In Section 3.3 of the main paper we compare the speed and accuracy in pricing
American option on dividend-paying stocks of the recursive projections and of the finite
difference scheme (FD) solution of the partial differential equation associated with the
pricing problem. Our main reference in developing the F'D scheme is in’t Hout and
Foulon (2010). Compared to our recursive projections, finite differences are a mature
topic of research, and refinements to specific applications are continuously developed.
We are not aware of works that extend in’t Hout and Foulon (2010) to introduce discrete
dividends in the same way that Vellekoop and Nieuwenhuis (2006) improve binomial trees.
Even though we believe that the picture we give of the relative performance of the two
methods is fair, we are aware that optimisations in the FD toolbox may attenuate the
advantage of the recursive projections. In this section, we first compare the convergence
properties of our implementation of the FD scheme with the one of in’t Hout and Foulon
(2010), and then we try to provide theoretical insights on why we are convinced that
recursive projections provide a computational advantage when pricing American options
on dividend-paying stocks.

As a first check of the quality of our implementation of the FD scheme, we can
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compare the convergence results of Figure (6) of the main text with the ones of Figure 5
of in’t Hout and Foulon (2010). In FD schemes, and in the alternating direction implicit
(ADI) variant (see below) that we implement, the number of time steps needed to obtain
convergence is a faithful measure of the efficiency of the implementation. Each time
step is composed of few simple matrix operations. We use specialised libraries for sparse
matrices to achieve these operations, and it is almost impossible to obtain substantial
speed gains in this part of the algorithm. In their implementation, in’t Hout and Foulon
(2010) obtain a 1bp error for a discretisation parameter between 500 and 1000. According
to their different simulation exercises on European options, the time steps needed to
achieve convergence are independent of the time to maturity. It is reasonable to think
that this is the number of time steps needed between each exercise date in our example.
They achieve this convergence with a slightly lower gird points in the stock dimension
(ms = 200 instead of 400), but higher for the volatility (m, = 100 instead of 31), so that
the overall number of grid points is comparable. Their slight gain in terms of grid points
is obtained at the cost of using a non equispaced grid, which makes the implementation
with dividends more complicated. Let us assume that by fine tuning our FD scheme
implementation, or by devising a more efficient way of treating the dividends, we could
achieve a convergence within 1 bp with Ly = 512, which is the lower bound to obtain
a 1bp convergence in in’t Hout and Foulon (2010) in the European case. According to
Figure (6) of the main text, the computational time would still be of at least 10s, an
order of magnitude slower than the recursive projections.

We now provide some theoretical arguments in favour of using the recursive projec-
tions over finite difference schemes when pricing American options on dividend-paying
stocks. We organize our discussion in 4 points. In the following, N gives the number
of points in which the function is evaluated. In the case that the underlying asset fol-

lows a multidimensional process, N is the product of the number of grid points in each
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dimension.

1. FD methods can achieve quadratic convergence in the time discretization parameter
At, provided that we implement an alternating direction implicit (ADI) scheme. ADI
schemes mean that for each time step, we need to perform two or more intermediate
time steps. In the same way that using central differences instead of one sided differences
provides a quadratic convergence to the differential operator in the stock dimension,
these intermediate time steps assure a quadratic convergence in the time dimension. In
the implementation of Section 3.3, we assumed p = 0 in the dynamics of Equation (21).
Under this assumption, we need one intermediate time step. Had we chosen p # 0, we
would have needed one or two additional time steps (see in’t Hout and Foulon (2010),
Section 2.3). Since the time needed by the F'D scheme to price the option is linear in
the number of time steps, this would have led to multiplying the computation time by a
factor of 1.5 or 2. The computation time needed by the recursive projections does not
depend on p being zero. This is a first reason why our comparison is not biased towards
the recursive projections.

2. Let us assume for the moment that the process of the underlying is purely diffu-
sive. The complexity, i.e., the number of computations needed, of the ADI is of the order
O(LrN), where Ly is the number of time steps. The complexity of the recursive projec-
tions is O(LN?), where L is the number of recursive steps, which, we remind, are much
less than L. The relative efficiency of the two methods depends on the ratio L/Lp.
In Section 3.3, in the example of the call option written on a stock that distributes 3
dividends before maturity, L = 3 while Ly may reach 2!° to have a 1bp convergence (see
Figure 5 in the main text). Figure 6 shows why in this example the two methods of
recursive projection and finite differences require a very different number of steps in the
time dimension. In a situation when L becomes large, e.g. an American put option, the

differences would be less marked.
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3. To compute the matrices needed to achieve a time step in the ADI, one needs to
invert matrices of dimension N x N. In the example of the call option written on a stock
that distributes 3 dividends before maturity, the matrices are band-diagonal (sparse), and
this means that the inversion has a computational cost of order O(NN). The matrices need
to be computed only once, and can be applied to all time steps. Thus, the overall O(N)
complexity of the F'D remains unaffected. If the underlying has a jump component, the
pricing equation we need to solve is a partial integral differential equation. The integral
term gives rise to a dense matrix that we need to invert, raising the complexity of the
algorithm to O(N?). In specific cases, we can keep the complexity to O(N log(N)). For
instance, d’Halluin et al. (2005) achieve a O(N log(N)) complexity, but in order to do
so, they need to implement an iterative method to obtain the inverse of the matrix. This
procedure is complex and application specific. First, we need to know the density of the
jump component analytically to be able to apply FFT techniques. Second, we can only
apply this technique to deterministic volatility models. It is not clear whether the same
results could apply to a stochastic volatility model. Moreover, the implementation of
d’Halluin et al. (2005) cannot reach quadratic convergence in the time dimension with
a regular grid in ¢. This raises issues for a possible application to the discrete dividend
case. In the empirical Section 4.2, we show that including jumps to a stochastic volatility
models is as simple as multiplying two transition matrices, without adding numerical
complexity to the problem.

4. Applying parallel computing to the recursive projections is straightforward. Equa-
tion (18) shows that, in the stochastic volatility case, we obtain every value v;, by an
entry-wide product of two matrices. In principle, we could compute all the v;, at once in
parallel. This is not feasible with the ADI scheme, since we obtain the entire value func-
tion at time ¢; as a matrix time vector multiplication involving the entire value function

at time #;.4.
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The four points above should convince the reader that the recursive projections com-
pare well with ADI methods in most applications, are better in others, and in each case
are much easier to implement. In the exercise of Section 3.3, we compare the recursive
projections against the ADI in a pure diffusive framework, which is the most favorable
case for the finite differences schemes. As we depart from the simple diffusion process,
the advantages of recursive projections become even clearer, first of all in the easiness of
implementation and generality. Our process has similar generality to Monte Carlo meth-
ods in terms of scope of application. Since the recursive and projection steps disentangle
the reconstruction of the value function from the operator that drives the dynamics of the
system, changing a payoff function, or adding intermediate cash flows, does not make the
recursive projections more complicated, both in numerical complexity and in practical
implementation. We need to code ADI methods for each pricing problem at hand, since
we have to take care of both payoff and intermediate cash flows in an ad hoc way. In
the recursive projections, adding additional components to the dynamic, as for instance
adding a jump component to a stochastic volatility model, is as simple as sampling tran-
sition densities, and multiplying the respective matrices. Doing the same with an ADI
scheme is not trivial, as would in most cases mean developing a new, problem specific,

scheme.
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Underlying | BS MRT BTS
OBS Y oM Oy o Y Oy o w OLT B P 0o

All stocks | 0.29 || 1.33 0.22 0.16 -0.12 || 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28
SP500%* 018 | NA NA NA NA ||061 014 -009 04 02 393 -052 0.2
MMM 0.25 || 1.10 0.20 0.11 -0.13 || 0.40 0.16 -0.12 0.68 0.29 1.38 -0.44 0.36

AA 038 | 1.68 0.30 0.22 -0.14| 050 0.28 -0.18 0.88 036 1.61 -0.33 0.34
AXP 034 219 0.25 014 -0.111 0.58 0.14 -0.06 0.78 037 1.34 -0.54 0.33
T 0.27 | 1.05 0.21 0.15 -0.09 | 037 0.16 -0.11 0.69 033 148 -0.26 0.29
BAC 032 ] 158 0.24 0.18 -0.16 | 1.20 0.18 -0.14 0.98 036 1.60 -0.45 0.34
BA 0.31 || 1.54 0.24 0.15 -0.13 || 0.40 0.18 -0.12 0.80 0.33 1.56 -0.37 0.24
CAT 032 ] 151 0.26 0.13 -0.10| 0.54 0.15 -0.06 0.78 035 1.46 -0.37 0.30
CHV 0.24 || 1.00 0.20 0.12 -0.09 || 0.26 0.15 -0.10 0.55 0.27 1.55 -0.26 0.23
CSCO 032 ] 136 0.25 0.17 -0.12 | 1.53 0.08 -0.10 1.08 0.32 1.8 -0.36 0.29
KO 0.24 | 1.03 0.19 0.13 -0.12 || 041 0.15 -0.11 0.66 0.27 1.49 -0.34 0.23
XOM 024 ] 092 0.19 0.15 -0.12 4 0.79 0.17 -0.12 0.69 0.24 1.57 -0.38 0.27
GE 0.27 ] 106 0.21 0.17 -0.14| 041 0.18 -0.17 0.83 036 143 -0.30 0.34
HWP 037 ] 1.81 0.28 020 -0.13 | 0.64 024 -0.20 098 045 1.76 -0.33 0.31
HD 032 ] 145 024 021 -0151| 043 0.28 -0.19 0.77 038 1.77 -0.39 0.34
INTC 038 || 1.82 0.29 0.20 -0.14 || 0.38 0.30 -0.28 0.75 0.36 1.64 -0.32 0.26
IBM 0.28 || 1.81 0.21 0.13 -0.14 || 0.51 0.22 -0.15 0.71 0.29 1.84 -0.38 0.21
JNJ 0.22 | 087 0.17 0.13 -0.10| 0.32 0.16 -0.10 0.67 0.25 149 -0.29 0.24
JPM 033 ] 119 0.28 0.15 -0.10| 0.27 0.18 -0.06 0.64 033 1.61 -0.34 0.26

MCD 0.25 | 1.08 0.20 0.13 -0.11 || 0.32 0.12 -0.12 0.65 0.26 1.31 -0.37 0.25
MRK 0.27 || 1.22 0.22 0.15 -0.11 || 0.40 0.14 -0.12 0.80 0.36 1.58 -0.32 0.24
MSFT 0.25 || 1.34 0.19 0.17 -0.09 || 0.35 0.24 -0.13 0.77 0.28 1.56 -0.22 0.34

PFE 0.28 || 1.45 0.21 0.17 -0.10 || 0.44 0.20 -0.13 0.80 0.28 1.25 -0.20 0.27
PG 0.21 | 1.00 0.17 0.14 -0.11 || 0.74 0.11 -0.07 057 0.25 1.29 -0.39 0.22
TRV 0.29 || 141 0.21 0.17 -0.08 || 049 0.16 -0.05> 0.82 0.32 1.71 -0.23 0.27
UNH 0.33 || 1.30 0.27 0.18 -0.16 || 0.99 0.24 -0.17 093 0.32 1.55 -0.48 0.28
UTX 0.27 || 1.17 0.22 0.13 -0.11 || 0.38 0.16 -0.11 0.66 0.30 1.47 -0.38 0.26
VZ 0.28 || 1.24 0.21 0.18 -0.11 || 0.60 0.17 -0.09 0.74 0.33 1.41 -0.24 0.33
WMT 0.26 | 1.14 0.21 0.15 -0.09 || 0.40 0.19 -0.09 0.71 0.29 1.44 -0.31 0.26
DIS 0.29 | 1.23 0.22 0.16 -0.09 || 0.50 0.23 -0.05 0.74 0.31 144 -0.37 0.26
DD 0.28 || 1.25 0.22 0.15 -0.12 || 0.37 0.18 -0.13 0.67 0.28 1.51 -0.40 0.27

Table 1: Average values of the parameters of the models of Black-Scholes (BS), Merton
(MRT) and Bates (BTS), calibrated at each day before the ex-dividend date on the
options written on the dividend-paying stocks belonging to the Dow Jones Industrial
Average Index (DJIA). In total we computed 1701 calibrations and the average values
shown in the table are computed on the results of those calibrations.

The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes
model, 0.20 for the Merton model, and 0.16 for the Bates model.

*The source of the calibrated parameters of the SP500 dynamics is the work of
Bakshi, Cao and Chen (1997).
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Fig. 5. Comparison between the true early exercise boundary S% and the approximated
early exercise boundary S},. S} is calculated by approximating the continuation value of
the option with the price of a European option where the starting value of the stock is
set equal to Sy minus the present value of all future dividends.
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Fig. 6. Comparison between recursive projections and F'D scheme. In both methods the
value function V' (.Sy, t) is computed on a time-homogeneous equally spaced grid. Recursive
projections need only to compute V' (S;,t) at specific times ¢, t;11,t,12 (Panel A), while
FD need to compute V (S, t) on a finer grid to achieve convergence (Panel B).
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