
Early exercise decision in American options

with dividend, stochastic volatility and jumps

- ONLINE APPENDIX -

Appendice A provides the proof of Propositions 1 of the main paper. In Appendix

B, we provide the analytic form of êj(y). In Appendix C, we characterize the space

translation invariance property of the transition matrices and we describe how we take

advantage of this property in the implementation of the algorithm. Appendix D compares

the recursive projections method with recent numerical technique which can accommo-

date discrete dividends, assuming a Black-Scholes dynamics for the underlying security.

These methods are the binomial tree and its improved version provided by Vellekoop and

Nieuwenhuis (2006), and the simulation least square approach method of Longsta� and

Schwartz (2001). We also discuss the new duality approach method of Haugh and Kogan

(2004), Rogers (2002), and Andersen and Broadie (2004). Appendix E gives a detailed

description of the data and the of calibration procedure, as well as the results of the

calibration with a breakdown per stock. Appendix F provides further evidence on the

importance of a correct modelling of the dividend as a discrete cash �ow when comput-

ing the early exercise boundary. In Appendix G we describe the relative advantages of

recursive projections and ADI schemes in solving di�erent pricing problems.
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Appendix A. Proofs

We prove Proposition 1 in three steps. Before stating starting the proof, we start by

providing some de�nitions that we will use extensively.

V ⊥(y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)ej(ϑ)εq(w)

def
=
∑
jq

V ⊥jq ej(y)εq(w),

(1)

G⊥2 (yi, wp, t; y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2G2(yi, ξp, t; θ1, θ2, T )ej(θ1)εq(θ2)ej(y)εq(w) (2)

def
=
∑
j,q

G⊥2,ipjqej(y)εq(w).

Equations (1) and (2) de�ne the coe�cients {V ⊥jq }j∈Z,q∈N and {G⊥2,ipjq}j∈Z,q∈N of the or-

thogonal projections V ⊥(y, w, T ) and G⊥2 (yi, wp, t; y, w, T ). Due to the orthogonality of

the orthonormal sets {ej(y)}j∈Z and {εq(y)}q∈N, we obtain the following:

v⊥ip(t)
def
=

∫
dy

∫
dwG⊥2 (yi, wp, t; y, w, T )V ⊥(y, w, T ) =

∑
jq

G⊥2,ipjqV
⊥
jq . (3)

Moreover, we denote the following approximation by v?ip(t) :

v?ip(t) =
√

∆y∆w
∑
jq

Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T ). (4)

Equation (4) gives approximation of the continuation value at t when the input at time

T is a true value. Most of the times, in practical applications, V (y, w, T ) = H(y, T ). In

the last case, v?ip(t) is the approximation of the price at t of a European contract.

Let wq and wq be the bounds of the support of size ∆w of the indicator functions

{εq}q∈Z centered on the {wq}q∈Z grid points. In the following, we repeatedly use the

second order Taylor expansion of bivariate functions. Let χ(ξ1, ξ2) be twice di�erentiable
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in the two variables ξ1 and ξ2. Then, for ξ̂1 ∈ [y
j
, yj) and ξ̂2 ∈ [wq, wq):

χ(ξ1, ξ2) = χ(yj, wq) + ∂ξ1χ(yj, wq)(ξ1 − yj) + ∂ξ2χ(yj, wq)(ξ2 − wq)

+ ∂2ξ1ξ2χ(ξ̂1, ξ̂2)(ξ1 − yj)(ξ2 − wq) +
1

2
∂2ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 +

1

2
∂2ξ22
χ(ξ̂1, ξ̂2)(ξ2 − wq)2.

We then have the useful expansion:

∫ yj

y
j

dξ1

∫ wq

wq

dξ2 χ(ξ1, ξ2)

= χ(yj, wq)∆y∆w +
1

2

∫ yj

y
j

dξ1

∫ wq

wq

dξ2

[
∂2ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 + ∂2ξ22

χ(ξ̂1, ξ̂2)(ξ2 − wq)2
]

= χ(yj, wq)∆y∆w +O
(
∆3
)
, as ∆→ 0, (5)

because, since yj and wq are the centre points of the integration interval, the integrals of

the other terms of the expansion vanish.

The proof of Proposition 1 is organized in the following four steps: 1) Lemma 1 tells

us that what matters for the convergence properties in Equations (14) and (15) of the

main paper is the rate of convergence of the approximated continuation value to the true

continuation value. 2) In Lemma 2, we show that the computed continuation value v?ip(t)

veri�es v?ip(t) = v⊥ip(t) + O(∆2). 3) In Lemma 3, we prove that v⊥ip(t) = V (yi, wp, t) +

O(∆2), which entails that v?ip(t) = V (yi, wp, t) + O(∆2), which proves Proposition 1 in

the European option case, i.e. Equation (14) by setting t = tL−1. 4) In Lemma 4, we

conclude by proving the recursive formula of Equation (15) of the main paper. The

summations on the indices j and q are understood to be from −∞ to +∞ and from 1 to

+∞, respectively.

LEMMA 1. Let A1, A2 and a2 be real numbers such that A1 and A2 are true quantities

and a2 is an approximation of A2. Then, we have the following inequality:

|max{A1, a2} −max{A1, A2}| ≤ |a2 − A2|. (6)
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Inequality (6) shows that the rate of convergence of max{A1, a2} to max{A1, A2} is given

by the rate of convergence of a2 to A2.

Proof of Lemma 1:

Proof. We must analyze four possibilities.

1. if A1 > a2 and A1 > A2, then |max{A1, a2} −max{A1, A2}| = 0.

2. if A1 ≤ a2 and A1 ≤ A2, then |max{A1, a2} −max{A1, A2}| = |a2 − A2|.

3. if A1 > a2 and A1 ≤ A2, then we have |max{A1, a2}−max{A1, A2}| = |A1−A2| ≤

|a2 − A2|, because A1 lies between a2 and A2.

4. if A1 ≤ a2 and A1 > A2, then we have |max{A1, a2}−max{A1, A2}| = |a2−A1| ≤

|a2 − A2|, because A1 lies between a2 and A2.

Gathering points 1-4 yields inequality (6).

LEMMA 2. The approximation error between v⊥ip(t) and v?iq(t) de�ned in (3) and (4)

satis�es:

v?ip(t) = v⊥ip(t) +O(∆2), as ∆→ 0.

Proof of Lemma 2. We must bound the di�erence:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣.

By Fourier isometry, we have:

∫∫
dθ1dθ2G2(yi, wp, t; θ1, θ2, T )ej(θ1)εq(θ2) =

1

4π2

∫∫
dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ).
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Then, we deduce:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣

=
1

4π2

∑
jq

∣∣∣√∆y∆w
( ∞∑
r,z=−∞

Ĝ2(xi, wp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ
)
V (yj, wq, T )

(7)

−
(∫∫

dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ)
)(∫∫

dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)
)∣∣∣.

The functions Ĝ2(yi, wp, t;λ, κ, T ), êj(−κ) and ε̂j(−λ) are twice continuously di�eren-

tiable. Moreover, let ∆ =
√

∆κ2 + ∆λ2. Using the property (5) with χ(λ, κ) =

Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) we have that:

∫∫
dλdκ Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) +O(∆

3
), (8)

=
∞∑

r,z=−∞

Ĝ2(xi, ξp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ as ∆→ 0.

Exploiting the continuity property of V (y, w, T ), we obtain:

∣∣∣∣√∆y∆w

∫∫
dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)− ∆y∆w V (yj, wq, T )

∣∣∣∣ (9)

≤
∫ yj

y
j

dθ2

∫ wq

wq

dθ1

∣∣∣V (θ1, θ2, T )− V (yj, wq, T )
∣∣∣ ≤ ∆y∆wC∆ = O(∆2), as ∆→ 0.

It then su�ces to substitute Equation (9) and (8) into (7), and to choose ∆ = O(∆),

to prove the statement of Lemma 2.

LEMMA 3. The following equality holds:

v⊥ip(t) = V (yi, wp, t) +O(∆2), as ∆→ 0.
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Proof of Lemma 3. We study the following di�erence:

V (yi, wp, t)− v⊥ip(t) =

∫∫
dydwG2(yi, wp, t; y, w, T )V (y, w, T )−

∑
jq

G⊥2,ipjqV
⊥
jq (10)

=
∑
jq

∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )

−
∑
jq

1

∆y∆w

∫ yj

y
j

dθ1

∫ wq

wq

dθ2G2(yi, wp, t; θ1, θ2, T )

∫ yj

y
j

dϑ1

∫ wq

wq

dϑ2V (ϑ1, ϑ2, T ).

We show that both terms in the right-hand side of (10) are equal to∑
j,q G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w + O(∆2). We start by the generic term of

the �rst summation. By applying (5) and (9):

∣∣∣∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )−G2(yi, wp, t; yj, wq, T )V (yj, wq, T )
∣∣∣ ≤∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )
∣∣V (y, w, T )− V (yj, wq, T )

∣∣
+ V (yj, wq, T )

∫ yj

y
j

dy

∫ wq

wq

dw
∣∣G2(yi, wp, t; y, w, T )−G2(yi, wp, t; yj, wq, T )

∣∣
≤ sup

y∈[y
j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)

+ sup
y∈[y

j
,yj)

w∈[wq ,wq)

ξ∈{y,w}

∂2ξ2G2(yi, wp, t; y, w, T )O
(
∆3
)
.

We can easily check that the generic term of the second summation in Equation (10)

equals:

1

∆y∆w

[
G2(yi, wp, t; yj, wq, T )∆y∆w +O(∆3)

][
V (yj, wq, T )∆y∆w +O(∆2)

]
= G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w +G2(yi, wp, t; yj, wq, T )O(∆2).

Then:

|V (yi, wp, t)− v⊥ip(t)| ≤
∑
j,q

sup
y∈[y

j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)
.

Because G2(yi, wp, t; y, w, T ) is a density, the above summation is �nite, and it proves

Lemma 3. Combining the results of Lemma 2 and Lemma 3, we have shown that the
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continuation value v?ip(t) = V (yi, wp, t) +O(∆2), that is, we have proven the convergence

of the algorithm in the European case.

LEMMA 4. Let vip(tl) be de�ned as in Equation (16) of the main paper, with l =

1, . . . , L − 2. Then vip(tl) converges to the true price V (yi, wp, tl) at a rate of the order

O(∆2).

Proof. We start by showing the convergence of vip(tL−2) to V (yi, wp, tL−2). Because of

Lemma 1, we only need to prove the convergence of the approximated continuation value

at t = tL−2 to the true continuation value at t = tL−2. We consider a contract evaluated

at two dates {tL−2, tL−1} prior to maturity, tL = T , namely tL−2 < tL−1 < T . Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)vjq(tL−1)
√

∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
V (yj, wq, tL−1)− V (yj, wq, tL−1) + vjq(tL−1)

]√
∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w

+
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w.

The quantities {V (yj, wq, tL−1)}j∈Z,p∈N are exact values; thus it follows from Lemma 2

and Lemma 3 that:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w = V (yi, wq, tL−2) +O
(
∆2
)
.

Again, from Lemmas 1 and

3, it follows that vjq(tL−1) = max{v?jq(tL−1), H(yj, wq, tL−1)} = V (yj, tL−1) + O
(
∆2
)
.

Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w

≤ sup
j
|vjq(tL−1)− V (yj, wq, tL−1)|e−r(tL−1−tL−2)

(
1 +O

(
∆3
))

= O
(
∆2
)
.
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In the last inequality, we take advantage of the fact that

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w = e−r(tL−2−tL−1)
(
1 +O

(
∆3
))
,

because G(x, ξ, tL−2; y, w, tL−1) is the deterministic discount factor times a density.

Indeed, the approximation operators built on indicator functions are shape pre-

serving, (see Dechevsky and Penev (1997) and Cosma et al. (2007)), and the

property of integration to one of a density is preserved. The O
(
∆3
)

term is

the speed at which the sum
∑

jq Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w converges to∫
dydw

∑
jq

∫
dθ1θ2G(yi, wp, tL−2; θ1, θ2, TL−1)ej(θ1)εq(θ2)ej(y)εq(w), and can be checked

using the same series expansions techniques as in the proof of Lemma 2. It read-

ily follows that vi(tL−2) = V (yi, tL−2) + O
(
(∆y)2

)
. The extension to prior dates

tl = tL−3, tl = tL−4, . . . , immediately follows by recursively applying the same arguments

used above.

The proof of Proposition 1 can be performed in a more general framework, and for

basis sets other than indicator functions. The key requirement is that only a �nite

number of basis functions contribute to the the approximation of a function at a given

point (yi, wp). Examples are orthonormal wavelets, non-orthogonal and bi-orthogonal

wavelet bases, and B-splines. The use of these function bases may be useful when we

need a basis that better adapts to the speci�c geometry of more complicated pricing

problems.
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Appendix B. Analytic Form for êj(y)

Let ej(y) be the indicator function of the interval [y
j
, yj), normalized according to the

L2 norm. Then the Fourier transform êj(λ) is given by the following:

êj(λ) =
2√

yj − yj

[
cos

(yj + y
j

2
λ

)
+ ι sin

(yj + y
j

2
λ

)]
sin

(yj − yj
2

λ

)/
λ

=
2

λ
√

∆y

[
cos(yjλ) + ι sin(yjλ)

]
sin
(
∆yλ

)
λ

.

Appendix C. Space Translation Invariance Property of

Transition Matrices

The transition matrix Γ2(yi, wp, tl; tl+1), as de�ned in Equation (11) of the main

paper, is a function of the conditioning values (yi, wp). The following two remarks

greatly simplify and speed up the computation of the transition matrices. First, in

Equation (17) of the main paper, only Ĝ2(yi, wp, tl; tl+1) actually depends on yi and

wp, which means that φ and ϕ only need to be computed once. Second, the evolu-

tion of the asset prices logarithm in the stochastic volatility model has the property

that increments are independent of the price level. Let M2(log(x), ξ, tl; log(y), w, tl+1) =

G2(x, ξ, tl; y, w, tl+1)y be the bivariate state price density as a function of log(y)

and let M̂2(log(x), ξ, tl;λ, κ, tl+1) be its Fourier transform. Then, if we sample the

transition densities and the payo� function on an equispaced grid in the log(y)

scale, i.e. {log(y)i}i=1,...,N , we can rewrite (17) by de�ning the N × W matrix

Ψ2((log(y))i, wp, tl; tl+1) = φ′M̂2((log(y))i, wp, tl; tl+1)ϕ
√

∆y∆w, where the R × Z ma-

trix M̂2((log(y))i, wp, tl; tl+1) corresponds to the R × Z matrix Ĝ2(yi, wp, tl; tl+1). Equa-

tion (18) becomes: vip(tl) = max
{
H(e(log(y))i , tl), Ψ2((log(y))i, wp, tl; tl+1) : v2(tl+1)

}
,

where vip(tl) is now the approximation to the value V (e(log(y))i , wp, tl). We have that
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Ψ2,jq((log(y))i+ζ , wp, tl; tl+1) = Ψ2,j−ζ q((log(y))i, wp, tl; tl+1) for ζ ∈ Z, provided that

0 < i+ζ < N . We refer to this property as to the space translation invariance property of

transition matrices. In implementations, we compute Ψ2((log(y))i, wp, tl; tl+1) only once

for at-the-money values of ((log(y))i, wp), and reconstruct the other transition matrices

exploiting the space translation invariance property. Again, this feature exempli�es the

computational advantage of direct sampling based on equally-spaced grids.

If we have to take into account discrete dividends, as in Section 3.3 of the main paper,

at each dividend date th, we must compute the continuation value of the option at the grid

{(log(elog(y)i−d), wp)}i=1,...,N ;p=1,...,W . If the original grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W has

a regular step in the log(y)i direction, then this is no more true for the grid {(log(elog(y)i−

d), wp)}i=1,...,N ;p=1,...,W . We can still take advantage of the space translation invariance of

the transition matrices because the state price densityM2(log(x), σ2
t , th; log(y), w, th+1) is

a function of log(x) and log(y) only through the di�erence log(y)− log(x). Let us perform

the following change of variable:

V (x− d, σ2
t , th) =

∫∫
d log(y)dwM2(log(x− d), σ2

t , th; log(y), w, th+1)V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y) + log
( x

x− d
)
, w, th+1

)
V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y), w, th+1

)
V (e(log(y)+log(1−d/x)), w, th+1).

For pricing by recursive projection, this procedure translates into the relationship:

vip(th) = max
{
H(elog(y)i , th),Ψ2(log(y)i, wp, th; th+1) : ṽ2;d(th+1)

}
, where ṽ2;d(th+1) are

approximations of the value function V (e(log(y)j+log(1−d/elog(y)i )), wq, th+1) obtained by a

second-order interpolation of the elements of v2(th+1). We can still compute the

Ψ2(log(y)i, wp, th; th+1) matrices on the regular grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W , and

we can still use the space translation invariance property to speed up computations.
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Appendix D. Comparison with Other Methods

As a �rst numerical example in the Black-Scholes framework, we compare the con-

vergence speed of a binomial tree and of the recursive projections method in pricing an

American call option on a dividend-paying stock1. Two popular modeling choices for the

dividend payment are a known cash amount d or a known dividend yield rd. The latter

is computationally friendly because it leads to a recombining tree. The known dividend

amount assumption does not lead to a recombining tree, and a new tree is originated at

each node following an ex-dividend date, increasing the numerical complexity of the prob-

lem. The work of Vellekoop and Nieuwenhuis (2006) provides a recent enhancement of the

classical binomial tree method which incorporates discrete dividend payments through an

approximation of the continuation value of the option at the ex-dividend dates. This new

algorithm has been proven to be substantially faster than the standard non-recombining

binomial tree, and is therefore a reliable benchmark for this simulation exercise.

[Figures 1 and 2 about here]

Figure 1 compares the convergence speed of the enhanced binomial tree and that of the

recursive projections method in pricing an American call option on a discrete dividend-

paying stock. The option has a maturity of T = 3 years and a dividend d = 2 is paid

out at the end of each year. Other parameters, namely the interest rate, volatility and

strike price, are set equal to r = 0.05, σ = 0.2, and K = 100, respectively. We compute 3

prices: at-the-money, in-the-money and out-of-the-money, corresponding to S0 = 80, 100,

and 120, respectively. The true values of 7.180, 18.526, and 34.033 are obtained with

10000 time steps in the binomial tree. The graphs show that, across the three di�erent

values of S0, the recursive projections enjoy an increase of speed of approximately a

factor 10 for a comparable level of precision. The speed advantage is even larger if we

consider that a new tree is needed for each value of S0. Instead, the recursive projections

1All of the codes are written in C++. The codes are available from the authors upon request.
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method delivers the entire value function v(0) at once in a straightforward manner.

This feature is particularly useful in computing Greeks through numerical di�erentiation.

As an additional benchmark, Figure 2 displays the convergence speed of the recursive

projections jointly with the one of a standard non-recombining tree. Even though the

non-recombining tree is known to be an ine�cient method, it is still used as a common

reference point in the literature, and we show this graph for comparison purposes. We

can see that the gain of speed of the recursive projection is of the order of 104. As an

aside, for S0 = 100, if we approximate the known constant dividend d = 2 with a known

continuous dividend yield2 rd = 0.013, then a binomial tree with 10000 steps delivers a

value of 18.213 instead of 18.526, with a relative error of approximately 169bp. This error

is far above observed bid-ask spreads. This simple example points to the importance of

using models that can explicitly address discrete dividends in empirical analysis, instead

of using approximations based on continuous dividend yields. Moreover, we have chosen

a sampling scheme that is equivalent to projecting the payo� function on a set of basis

functions that are well localized, in the sense that their support is a closed interval.

The implication is that local features of the payo� function, such as a discontinuity,

are described by the coe�cients relative to one or at most two basis functions, those

lying next to the discontinuity. This description avoids a noisy approximation induced

by spurious oscillations when projecting discontinuities on basis functions de�ned on the

entire domain, such as the Fourier sine-cosine basis or the Hermite polynomial basis. From

a computational perspective, this property translates into an accurate approximation

even for payo�s with strong discontinuities, such as a digital payo� H(Stl , tl) = IStl>K
in

a Bermudan digital call option. The discontinuity may introduce noise at most in the

coe�cient relative to the indicator function of the interval in which the discontinuity is

2The yield is obtained by considering the dividends paid at t = 1 and t = 2 only, because the dividend

paid at t = 3 has no impact on the price of the option. Considering a dividend yield of 2% would provide

an option value of 16.857, which is a much larger error.
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located. The noise is completely eliminated if we make sure that that the strike value

lies in between two consecutive grid points, so that the discontinuity is at the boundary

between two consecutive indicator functions. In this numerical example, we use the

standard binomial tree as a benchmark, since the method of Vellekoop and Nieuwenhuis

(2006) provides no advantage in the absence of dividends. Figure 3 (see the caption of the

table for the values of the parameters of the example) shows that the binomial tree has

problems capturing the discontinuity in the payo� function. Consequently, an extremely

slow convergence of the tree method for at-the-money Bermudan digital call options is

yielded. The recursive projections are also at least an order of magnitude faster in pricing

the out-of-the-money options. The apparent non-monotonic convergence of the binomial

tree for S0 = 120 is because both methods achieve a quick convergence for in-the-money

options, and the graph only displays small oscillations on the order of half a basis point

around the true value.

[Figure 3 about here]

Another group of numerical methods that can be applied to the same pricing problems

are the Monte-Carlo simulation methods. They can handle both discrete dividends and

multidimensional settings. The least-squares approach of Longsta� and Schwartz (LS)

provides a simulation based algorithm to price American options, via a lower bound for the

true price. This lower bound is then coupled with an upper bound in the implementation

of Andersen and Broadie (2004) of the duality approach of Haugh and Kogan (2004)

and Rogers (2002). In their numerical results, Andersen and Broadie (2004) show that

the gap between the lower bound and the upper bound can be very tight, making the

algorithm appealing. In Figure 4, we compare the speed and accuracy of the LS algorithm

with our method in the same three examples as before. Our algorithm is faster than the

LS method by at least four orders of magnitude. Intuitively, the main advantage of our

algorithm is that it needs to evaluate the option only when it can be optimal to exercise
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it. In the case of a call option, this happens just before the payment of the dividends.

In this speci�c example, when there are only two dividend payments, our algorithm

computes the �nal price with only two recursions. On the contrary, every simulation

based method needs to simulate the entire trajectories, increasing the computation time.

The duality approach implementation of Andersen and Broadie (2004) builds on the LS

algorithm and necessitates additional simulations at each potential exercise date to build

the upper bound for the price, thus further increasing the numerical complexity and the

computation time. Given the results obtained for the LS algorithm, we can con�dently

conclude that our algorithm is also faster than the duality approach in pricing a call

option written on a stock which distributes regular discrete dividends.

Appendix E. Data and Calibration Procedure

We conduct our analysis over the period January 1996 - December 2012. We use all

short term call option series with maturity less than six months written on the dividend-

paying stocks belonging to the Dow Jones Industrial Average Index (DJIA) at the end of

2012. According to other studies (Barraclough and Whaley (2012); Pool et al. (2008)),

we proxy for the timing of the expected dividends paid during an option life time with

the actual distribution time of dividends, and we proxy for future dividends amounts by

using the last known dividend amount. We exclude from our sample the data relative

to periods in which the underlying stock experiences an unusual corporate event that

may alter the option valuation, such as special dividend distribution, new equity issue,

or spin o�. To ensure the exclusion of the e�ects of such corporate events and their

anticipation by investors from our sample, we do not consider the data starting from nine

months before the special corporate event up to nine months after. After applying these

exclusionary criteria, we obtain a dataset of 1701 days before ex-dividend to analyze.

For each stock and at each day before an ex-dividend date, we separately calibrate the
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parameters of the models of Black-Scholes, Merton, and Bates on a calibration sample

by minimizing the implied volatility mean squared error (IVMSE) as IVMSE(χ) =∑n

i=1(σi−σi(χ))2, where χ is the set of parameters to estimate, σi = BS−1(Ci, Ti, Ki, S, r)

is the market implied volatility and σi(χ) = BS−1(Ci(χ), Ti, Ki, S, r) is the model implied

volatility, where Ci(χ) is the model price of the American option i. The choice of this loss

function follows the argumentation of Christo�ersen and Jacobs (2004). The calibration

made on implied volatilities is more stable out of sample, in particular for the stochastic

volatility model. We infer the model speci�c parameters of the underlying process by

calibration on a set of reliable and liquid option data. More speci�cally, the calibration

sample consists of contracts traded in the four months preceding the calibration day,

that have no dividend payment in their remaining life. These contracts can be treated

as European. In this way we can take advantage of the semi-closed pricing formula for

European options. We then apply some exclusionary criteria: we do not consider options

that should be optimally exercised, because their price is equal to the exercise proceeds

for mostly all values of the parameters and the minimization problem is ill posed. We thus

consider the option quotations that strictly satisfy the following inequality: C > S−K; we

do not consider option data with a price less than 3/8 of a dollar, in order to avoid e�ects

due to price discreteness; we do not consider options with volume equal to zero as the non-

traded quoted prices are not reliable prices; �nally, we do not consider options which are

deep in-the-money or deep out-of-the-money, as they can destabilize the minimization

problem. Following Bollen and Whaley (2004), a call option is classi�ed deep in-the-

money if its delta is larger than 0.875. Symmetrically, a call option is classi�ed deep out-

of-the-money if its delta is less than 0.125. After applying these criteria, the calibration

sample at each day before the ex-dividend date consists of 110 call options on average.

The models of Black-Scholes and Merton are one-dimensional and do not present any

particular numerical issue; so we simply calibrate all their parameters on the calibration
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sample described above. The Bates model, on the contrary, is two-dimensional. There-

fore, in addition to the calibration of its parameters, it needs the calculation of the daily

instantaneous spot volatility σ0, which is a non-observable variable. It is also a more

sophisticated model with its seven parameters. In order to e�ciently calibrate it, we use

a procedure where we take into consideration the speci�c role of the parameters on the

implied volatility surface. To the best of our knowledge, we are the �rst academic work

in which the Bates model is calibrated on single stocks. Hence we borrow some intuition

for our new calibration procedure from the practitioners studies of Hagan et al. (2002),

and West (2005). According to these studies, each parameter of the volatility dynamics

has a speci�c impact on the term structure of the implied volatility smile. The volatility

of volatility ω rules the convexity of the smile while the correlation parameters ρ rules

the slope of the smile. In the two works cited above, the authors consider a pure di�usive

process for the volatility, ignoring the mean reversion part. They show that for short term

options this reduced model provides a very good �t to the data. Indeed, for the short

term options the value of ∆t is very small compared to the possible values of ∆W and

the dynamics of the stochastic volatility process is driven mainly by the Brownian motion

part. The role of the mean reverting part of the stochastic volatility process of Heston

is to reproduce that implied volatilities of long maturity options are less volatile than

those of short maturity options and are usually closer to the long run average volatility.

The mean reverting part avoids that the volatility increases inde�nitely with maturity.

In principle, for our application on short term options, only the di�usion component of

the stochastic volatility is su�cient to give a good �t. However, as we want to employ

the full dynamics of the Bates model, we calibrate the mean reversion and the long term

volatility parameters as well on long term options.

To this end, we calibrate the parameters in two steps: �rst, we calibrate the jump pa-

rameters together with the volatility of volatility and the correlation on the short term
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options calibration sample described above. In this optimization, we do not consider the

mean reversion part of the stochastic volatility. Then, as a second step, we calibrate

the mean reversion and the long term volatility on a sample of two long term options,

while keeping the other parameters �xed to those obtained in the previous step. For the

calibration, we use the two long term options with the highest trading volume among the

long term options with maturity between ten months and two years which were recorded

in the four months before the calibration. In this long term calibration, we use as objec-

tive function the minimisation of the price percentage mean squared error instead of the

implied volatility mean squared error. As the long term options have dividends during

their life and their American price di�ers from the European one, we cannot recover the

implied volatility in the usual way. If we had calibrated the long term volatility and the

mean reversion on the short term options directly, we would have obtained an unreason-

able high value for the mean reversion and an unreasonable low value for the long term

volatility. This spurious e�ect is due to the very high convexity of the short term smile

combined with the drift part of the stochastic volatility dynamics having little or null

impact on the prices of short term options, as explained before.

For the calculation of the non-observable daily instantaneous spot volatility σ0(t),

we follow the result of Medvedev and Scaillet (2010). We use the time series of the

one month (or close to) European at-the-money implied volatility as proxy for the spot

volatility. For the days considered in the calibration sample we have European options by

construction. In addition to these days, we need as well to compute the value of σ0 on all

days before the ex-dividend dates in order to price options and determine which options

should be exercised. On the day before the ex-dividend date, however, all options have

a dividend during their life, as the �rst dividend is paid the day after. In principle there

are no European options available. In order to make it possible to calculate σ0 on the

day before the ex-dividend date, we consider as European the options which should not
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be exercised and which have only the dividend paid the following day left during their

remaining life. These options are not European only because they have an early exercise

possibility until the dividend is paid. However, as the dividend is paid the following day

and these contracts are outside the early exercise region, the early exercise premium is

nearly zero and the price of the American option almost coincides with the price of an

European option. In the same spirit, Bakshi et al. (2003) extract the European implied

volatility from the American options prices, and they show that the di�erence between

the European implied volatility and the American implied volatility is negligible and

within the bid-ask spread. By employing the same approximation, we calculate σ0 at

each day before the ex-dividend date as the average of the European implied volatility

of the at-the-money options that should not be exercised with maturity one month (or

close to).

The results of the calibration with a breakdown per stock are presented in Table 1.

We note that the calibrated values of the parameters are homogeneous among stocks, and

take sensible values in line with other studies made on index options (see Bakshi et al.

(1997)).

Appendix F. Correct Modelling of Dividend

In this section, we provide further evidence on the importance of a correct modelling

of the dividend as a discrete cash �ow when computing the early exercise boundary.

The setup is the same as in Section 4.1 of the main text. There are two dividends

to be paid over the remaining life of the option, which is 6 months. One is to be paid

immediately (t = 0), the second in 3 months (t = 0.25). We compute the early exercise

boundary by i) correctly taking into account that the dividends are discrete, and ii) by

using the �escrow dividend� approximation, that is we price the contract at t = 0 as if

it were a European option, with the continuation value after the �rst dividend payment
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not being computed at S0− d, but at S0− d− d · e−r(0.25). We compute the early exercise

boundary under the three models (Black-Scholes, Merton and Bates), with the following

representative parameters: λ = 5, µj = 0, σj = 0.2, σMRT = 0.2, σBS, σ0 = 0.2, ω = 0.1,

σLT = 0.3, β = 4, ρ = −0.5, r = 0.05. Figure 5 displays the results of our numerical study.

We call S∗A,t the early exercise boundary computed under assumption i), and S∗E,t the one

under assumption ii). The two boundaries S∗A,t and S∗E,t coincide after the dividend at

t = 0.25 is paid out, since there are no more intermediate cash �ows before maturity, and

the continuation value is in both cases the one of a European call with a time-to-maturity

of 3 months. At t = 0, the two boundaries are di�erent, with S∗E,t < S∗A,t. This means

that an investor basing his exercise decision on the approximation S∗E,t, may suboptimally

decide to exercise the option at t = 0, if S∗E,0 < S0 < S∗A,0. He would then incur a loss

given by C(S0 − d, 0)− (S0 −K), where C(S0 − d, 0) is the correct price of an American

option, computed at the stock value S0 − d. The upper bound for the loss coming from

the escrowed dividend approximation is reached exactly when S0 = S∗E,0. In this case, the

following formulae give the maximum percentage loss at t = 0 under the three modelling

environments considered and with the model parameters given above:

DL%BS =
CBS(S∗E,BS)− (S∗E,BS −K)

CBS(S∗E,BS)
= 0.63%,

DL%MRT =
CMRT (S∗E,MRT )− (S∗E,MRT −K)

CMRT (S∗E,MRT )
= 0.48%,

DL%BTS =
CBTS(S∗E,BTS)− (S∗E,BTS −K)

CBTS(S∗E,BTS)
= 1.14%,

where we have suppressed for readability the dependence from time, and where the indexes

BS,MRT,BTS mean that we have computed the relevant quantities under the Black

Scholes, Merton and Bates models, respectively. The investors can lose up to 1% of the

market value of their option if they exercise according to the wrong boundary.

We �nally check in our database if there are situations in which the stock reaches

the value S∗E,t but not S
∗
A,t on the days before the ex-dividend dates. We �nd that this
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occurrence does happen, and not sporadically. For example, on May 10th, 2006, the

Dupont stock closes at 45.71 dollars. The call option with K = 30 and T = 0.45 should

not be exercised if the continuation value is computed correctly, but the option should be

exercised if the continuation value is approximated with a European price. In this case, if

an investor exercises his option wrongly, he will su�er a loss given by: DL%BS = 0.07%,

DL%MRT = 2%, DL%BTS = 0.06%.

Appendix G. Comparison with Finite Di�erence

Methods

In Section 3.3 of the main paper we compare the speed and accuracy in pricing

American option on dividend-paying stocks of the recursive projections and of the �nite

di�erence scheme (FD) solution of the partial di�erential equation associated with the

pricing problem. Our main reference in developing the FD scheme is in't Hout and

Foulon (2010). Compared to our recursive projections, �nite di�erences are a mature

topic of research, and re�nements to speci�c applications are continuously developed.

We are not aware of works that extend in't Hout and Foulon (2010) to introduce discrete

dividends in the same way that Vellekoop and Nieuwenhuis (2006) improve binomial trees.

Even though we believe that the picture we give of the relative performance of the two

methods is fair, we are aware that optimisations in the FD toolbox may attenuate the

advantage of the recursive projections. In this section, we �rst compare the convergence

properties of our implementation of the FD scheme with the one of in't Hout and Foulon

(2010), and then we try to provide theoretical insights on why we are convinced that

recursive projections provide a computational advantage when pricing American options

on dividend-paying stocks.

As a �rst check of the quality of our implementation of the FD scheme, we can
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compare the convergence results of Figure (6) of the main text with the ones of Figure 5

of in't Hout and Foulon (2010). In FD schemes, and in the alternating direction implicit

(ADI) variant (see below) that we implement, the number of time steps needed to obtain

convergence is a faithful measure of the e�ciency of the implementation. Each time

step is composed of few simple matrix operations. We use specialised libraries for sparse

matrices to achieve these operations, and it is almost impossible to obtain substantial

speed gains in this part of the algorithm. In their implementation, in't Hout and Foulon

(2010) obtain a 1bp error for a discretisation parameter between 500 and 1000. According

to their di�erent simulation exercises on European options, the time steps needed to

achieve convergence are independent of the time to maturity. It is reasonable to think

that this is the number of time steps needed between each exercise date in our example.

They achieve this convergence with a slightly lower gird points in the stock dimension

(ms = 200 instead of 400), but higher for the volatility (mv = 100 instead of 31), so that

the overall number of grid points is comparable. Their slight gain in terms of grid points

is obtained at the cost of using a non equispaced grid, which makes the implementation

with dividends more complicated. Let us assume that by �ne tuning our FD scheme

implementation, or by devising a more e�cient way of treating the dividends, we could

achieve a convergence within 1 bp with LT = 512, which is the lower bound to obtain

a 1bp convergence in in't Hout and Foulon (2010) in the European case. According to

Figure (6) of the main text, the computational time would still be of at least 10s, an

order of magnitude slower than the recursive projections.

We now provide some theoretical arguments in favour of using the recursive projec-

tions over �nite di�erence schemes when pricing American options on dividend-paying

stocks. We organize our discussion in 4 points. In the following, N gives the number

of points in which the function is evaluated. In the case that the underlying asset fol-

lows a multidimensional process, N is the product of the number of grid points in each
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dimension.

1. FD methods can achieve quadratic convergence in the time discretization parameter

∆t, provided that we implement an alternating direction implicit (ADI ) scheme. ADI

schemes mean that for each time step, we need to perform two or more intermediate

time steps. In the same way that using central di�erences instead of one sided di�erences

provides a quadratic convergence to the di�erential operator in the stock dimension,

these intermediate time steps assure a quadratic convergence in the time dimension. In

the implementation of Section 3.3, we assumed ρ = 0 in the dynamics of Equation (21).

Under this assumption, we need one intermediate time step. Had we chosen ρ 6= 0, we

would have needed one or two additional time steps (see in't Hout and Foulon (2010),

Section 2.3). Since the time needed by the FD scheme to price the option is linear in

the number of time steps, this would have led to multiplying the computation time by a

factor of 1.5 or 2. The computation time needed by the recursive projections does not

depend on ρ being zero. This is a �rst reason why our comparison is not biased towards

the recursive projections.

2. Let us assume for the moment that the process of the underlying is purely di�u-

sive. The complexity, i.e., the number of computations needed, of the ADI is of the order

O(LTN), where LT is the number of time steps. The complexity of the recursive projec-

tions is O(LN2), where L is the number of recursive steps, which, we remind, are much

less than LT . The relative e�ciency of the two methods depends on the ratio L/LT .

In Section 3.3, in the example of the call option written on a stock that distributes 3

dividends before maturity, L = 3 while LT may reach 210 to have a 1bp convergence (see

Figure 5 in the main text). Figure 6 shows why in this example the two methods of

recursive projection and �nite di�erences require a very di�erent number of steps in the

time dimension. In a situation when L becomes large, e.g. an American put option, the

di�erences would be less marked.
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3. To compute the matrices needed to achieve a time step in the ADI, one needs to

invert matrices of dimension N ×N . In the example of the call option written on a stock

that distributes 3 dividends before maturity, the matrices are band-diagonal (sparse), and

this means that the inversion has a computational cost of order O(N). The matrices need

to be computed only once, and can be applied to all time steps. Thus, the overall O(N)

complexity of the FD remains una�ected. If the underlying has a jump component, the

pricing equation we need to solve is a partial integral di�erential equation. The integral

term gives rise to a dense matrix that we need to invert, raising the complexity of the

algorithm to O(N3). In speci�c cases, we can keep the complexity to O(N log(N)). For

instance, d'Halluin et al. (2005) achieve a O(N log(N)) complexity, but in order to do

so, they need to implement an iterative method to obtain the inverse of the matrix. This

procedure is complex and application speci�c. First, we need to know the density of the

jump component analytically to be able to apply FFT techniques. Second, we can only

apply this technique to deterministic volatility models. It is not clear whether the same

results could apply to a stochastic volatility model. Moreover, the implementation of

d'Halluin et al. (2005) cannot reach quadratic convergence in the time dimension with

a regular grid in t. This raises issues for a possible application to the discrete dividend

case. In the empirical Section 4.2, we show that including jumps to a stochastic volatility

models is as simple as multiplying two transition matrices, without adding numerical

complexity to the problem.

4. Applying parallel computing to the recursive projections is straightforward. Equa-

tion (18) shows that, in the stochastic volatility case, we obtain every value vip by an

entry-wide product of two matrices. In principle, we could compute all the vip at once in

parallel. This is not feasible with the ADI scheme, since we obtain the entire value func-

tion at time tl as a matrix time vector multiplication involving the entire value function

at time tl+1.
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The four points above should convince the reader that the recursive projections com-

pare well with ADI methods in most applications, are better in others, and in each case

are much easier to implement. In the exercise of Section 3.3, we compare the recursive

projections against the ADI in a pure di�usive framework, which is the most favorable

case for the �nite di�erences schemes. As we depart from the simple di�usion process,

the advantages of recursive projections become even clearer, �rst of all in the easiness of

implementation and generality. Our process has similar generality to Monte Carlo meth-

ods in terms of scope of application. Since the recursive and projection steps disentangle

the reconstruction of the value function from the operator that drives the dynamics of the

system, changing a payo� function, or adding intermediate cash �ows, does not make the

recursive projections more complicated, both in numerical complexity and in practical

implementation. We need to code ADI methods for each pricing problem at hand, since

we have to take care of both payo� and intermediate cash �ows in an ad hoc way. In

the recursive projections, adding additional components to the dynamic, as for instance

adding a jump component to a stochastic volatility model, is as simple as sampling tran-

sition densities, and multiplying the respective matrices. Doing the same with an ADI

scheme is not trivial, as would in most cases mean developing a new, problem speci�c,

scheme.
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Underlying BS MRT BTS

σBS γ σM σψ µψ γ σψ µψ ω σLT β ρ σ0

All stocks 0.29 1.33 0.22 0.16 -0.12 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28

SP500* 0.18 NA NA NA NA 0.61 0.14 -0.09 0.4 0.2 3.93 -0.52 0.2

MMM 0.25 1.10 0.20 0.11 -0.13 0.40 0.16 -0.12 0.68 0.29 1.38 -0.44 0.36

AA 0.38 1.68 0.30 0.22 -0.14 0.50 0.28 -0.18 0.88 0.36 1.61 -0.33 0.34

AXP 0.34 2.19 0.25 0.14 -0.11 0.58 0.14 -0.06 0.78 0.37 1.34 -0.54 0.33

T 0.27 1.05 0.21 0.15 -0.09 0.37 0.16 -0.11 0.69 0.33 1.48 -0.26 0.29

BAC 0.32 1.58 0.24 0.18 -0.16 1.20 0.18 -0.14 0.98 0.36 1.60 -0.45 0.34

BA 0.31 1.54 0.24 0.15 -0.13 0.40 0.18 -0.12 0.80 0.33 1.56 -0.37 0.24

CAT 0.32 1.51 0.26 0.13 -0.10 0.54 0.15 -0.06 0.78 0.35 1.46 -0.37 0.30

CHV 0.24 1.00 0.20 0.12 -0.09 0.26 0.15 -0.10 0.55 0.27 1.55 -0.26 0.23

CSCO 0.32 1.36 0.25 0.17 -0.12 1.53 0.08 -0.10 1.08 0.32 1.88 -0.36 0.29

KO 0.24 1.03 0.19 0.13 -0.12 0.41 0.15 -0.11 0.66 0.27 1.49 -0.34 0.23

XOM 0.24 0.92 0.19 0.15 -0.12 0.79 0.17 -0.12 0.69 0.24 1.57 -0.38 0.27

GE 0.27 1.06 0.21 0.17 -0.14 0.41 0.18 -0.17 0.83 0.36 1.43 -0.30 0.34

HWP 0.37 1.81 0.28 0.20 -0.13 0.64 0.24 -0.20 0.98 0.45 1.76 -0.33 0.31

HD 0.32 1.45 0.24 0.21 -0.15 0.43 0.28 -0.19 0.77 0.38 1.77 -0.39 0.34

INTC 0.38 1.82 0.29 0.20 -0.14 0.38 0.30 -0.28 0.75 0.36 1.64 -0.32 0.26

IBM 0.28 1.81 0.21 0.13 -0.14 0.51 0.22 -0.15 0.71 0.29 1.84 -0.38 0.21

JNJ 0.22 0.87 0.17 0.13 -0.10 0.32 0.16 -0.10 0.67 0.25 1.49 -0.29 0.24

JPM 0.33 1.19 0.28 0.15 -0.10 0.27 0.18 -0.06 0.64 0.33 1.61 -0.34 0.26

MCD 0.25 1.08 0.20 0.13 -0.11 0.32 0.12 -0.12 0.65 0.26 1.31 -0.37 0.25

MRK 0.27 1.22 0.22 0.15 -0.11 0.40 0.14 -0.12 0.80 0.36 1.58 -0.32 0.24

MSFT 0.25 1.34 0.19 0.17 -0.09 0.35 0.24 -0.13 0.77 0.28 1.56 -0.22 0.34

PFE 0.28 1.45 0.21 0.17 -0.10 0.44 0.20 -0.13 0.80 0.28 1.25 -0.20 0.27

PG 0.21 1.00 0.17 0.14 -0.11 0.74 0.11 -0.07 0.57 0.25 1.29 -0.39 0.22

TRV 0.29 1.41 0.21 0.17 -0.08 0.49 0.16 -0.05 0.82 0.32 1.71 -0.23 0.27

UNH 0.33 1.30 0.27 0.18 -0.16 0.99 0.24 -0.17 0.93 0.32 1.55 -0.48 0.28

UTX 0.27 1.17 0.22 0.13 -0.11 0.38 0.16 -0.11 0.66 0.30 1.47 -0.38 0.26

VZ 0.28 1.24 0.21 0.18 -0.11 0.60 0.17 -0.09 0.74 0.33 1.41 -0.24 0.33

WMT 0.26 1.14 0.21 0.15 -0.09 0.40 0.19 -0.09 0.71 0.29 1.44 -0.31 0.26

DIS 0.29 1.23 0.22 0.16 -0.09 0.50 0.23 -0.05 0.74 0.31 1.44 -0.37 0.26

DD 0.28 1.25 0.22 0.15 -0.12 0.37 0.18 -0.13 0.67 0.28 1.51 -0.40 0.27

Table 1: Average values of the parameters of the models of Black-Scholes (BS), Merton
(MRT) and Bates (BTS), calibrated at each day before the ex-dividend date on the
options written on the dividend-paying stocks belonging to the Dow Jones Industrial
Average Index (DJIA). In total we computed 1701 calibrations and the average values
shown in the table are computed on the results of those calibrations.
The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes
model, 0.20 for the Merton model, and 0.16 for the Bates model.

*The source of the calibrated parameters of the SP500 dynamics is the work of
Bakshi, Cao and Chen (1997).
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Fig. 5. Comparison between the true early exercise boundary S∗A and the approximated
early exercise boundary S∗E. S

∗
E is calculated by approximating the continuation value of

the option with the price of a European option where the starting value of the stock is
set equal to S0 minus the present value of all future dividends.
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Fig. 6. Comparison between recursive projections and FD scheme. In both methods the
value function V (St, t) is computed on a time-homogeneous equally spaced grid. Recursive
projections need only to compute V (St, t) at speci�c times tl, tt+1, tl+2 (Panel A), while
FD need to compute V (St, t) on a �ner grid to achieve convergence (Panel B).
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