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Abstract

This paper investigates crash risk premiums in individual stocks using skewness
swaps. These swaps involve buying a stock’s risk-neutral skewness and receiving
the realized skewness as a payoff. The strategy’s returns, which measure the skew-
ness risk premium, are found to be consistently large and positive. This suggests
investors are concerned about potential crashes in individual stocks and require sub-
stantial compensation for bearing this risk. Notably, significant results are mainly
observed after the 2007/2009 financial crisis, indicating changes in post-crisis option
market dynamics. Cross-sectional determinants of skewness swap returns include
measures of systematic crash risk and stock overvaluation.
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1 Introduction

Stock markets do crash. Over the past century, the U.S. stock market has experienced

at least five of these episodes, two of them just ten years apart: the global financial crisis

crash in 2008 and the Covid pandemic crash in 2020.1 Due to their rarity, they are very

hard to predict and investors are left with the only option to hedge against these events,

rather than avoiding them. The option market provides an ideal laboratory to study

the pricing of crash risk. Investors can protect themselves from market crashes by pur-

chasing put options or more sophisticated option portfolios which provide hedges against

variance and skewness risk. Indeed, a significant body of literature focusing on variance

risk, skewness risk, and crash risk has examined the returns generated by these hedging

option portfolios, particularly variance swaps and skewness swaps (see e.g., Carr and Wu

2009; Kozhan, Neuberger, and Schneider 2013; Schneider and Trojani 2019; Bakshi and

Kapadia 2003; Bollerslev and Todorov 2011; Bondarenko 2014b). These studies have con-

sistently documented highly negative returns, indicating that investors are willing to pay

exceptionally high premia to protect themselves against market downturns and turmoils.2

Individual stocks do crash as well and they do so even outside periods of market

stress.3 Surprisingly, the evidence on pricing of crash risk for individual stocks is limited.

Early studies agree that single-stock put options are cheap and demand for out-of-the-

1Other notable events that are commonly considered stock market crashes include the 1929 Great
Depression, Black Monday of 1987, and the 2001 dotcom bubble burst.

2For example, Carr and Wu (2009) and Kozhan et al. (2013) document that the average (absolute
value of) monthly return of a variance swap (skewness swap) on the S&P500 index is 66% and 42%,
respectively.

3In the last twenty years, if we exclude the crises periods, an average of eighteen stocks per month,
among the stocks belonging to the S&P500, has suffered a daily drop of less than -10%.
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money puts is low compared to out-of-the-money calls (see e.g., Bollen and Whaley 2004;

Garleanu, Pedersen, and Poteshman 2009; Bakshi, Kapadia, and Madan 2003). Prior

studies that have employed option returns to assess the premium paid by investors to be

protected against the risk associated with individual stocks have predominantly concen-

trated on measuring variance risk premiums using variance swaps or variance portfolios

(Carr and Wu 2009; Duarte, Jones, and Wang 2023; Heston and Todorov 2023).

This paper contributes to this literature by studying skewness swap returns on in-

dividual stocks within the S&P500 index from 2003 to 2020. Specifically, the paper’s

contribution can be divided into two key aspects.

First, it proposes a methodology to construct skewness swaps at the individual stock

level. These swaps provide a direct exposure to skewness, while being designed to be

independent of other moments. The methodology builds on Schneider and Trojani (2019),

with the added feature of independence from the fourth moment as well. I provide both

convergence results and a simulation analysis, which demonstrate the accuracy of the

approach.

Skewness swaps are trading strategies in which an investor buys the stock’s risk-

neutral skewness via an option portfolio at the beginning of the month and receives, as a

payoff, the realized skewness of the stock at the end of the month. The strategy is a pure

bet on skewness: it performs well when realized returns exhibit high positive skewness

and incurs losses when they exhibit low negative skewness.4 While skewness swaps have

4Formally, the payoff of a skewness swap is the difference between the realized skewness of the stock
(denoted P-skewness) and the risk-neutral skewness (denoted Q-skewness). The payoff of the strategy is
thus positive when the realized P-skewness exceeds the Q-skewness. This difference provides a direct and
tradable measure of the compensation investors demand for bearing skewness risk, that is, the skewness
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been used to study the skewness risk premium on the market index (see, e.g., Schneider

and Trojani 2015; Kozhan, Neuberger, and Schneider 2013), to the best of my knowledge,

they have not been employed to investigate the skewness risk premium at the individual

stock level.

Empirical implementation of skewness swaps across the cross-section of stock op-

tions reveals consistently positive swap returns of remarkable magnitude, with an average

Sharpe ratio of 0.53. Despite their overall positivity, the time-series pattern of swap re-

turns displays a strong negative skew, characterized by infrequent but significant losses.

These returns resemble the performance of selling crash insurance, which typically gen-

erates profits until the triggering event occurs – in this case, a crash of the stock, leading

to substantial losses in the strategy. The notably high average returns strongly indicate

the presence of a significant crash risk premium priced within individual stock options.

Incorporating transaction costs, such as bid-ask spreads, does diminish profits to some

extent but does not alter the primary finding: skewness swap returns remain positive

for the majority of stocks. These results hold up even when accounting for the discrete

nature of option prices and considering the limited range of moneyness.

Importantly, these returns cannot be attributed to equity and variance risk premia

alone, as their combined effect can only account for approximately 50% of the variability

observed in skewness swap returns.

Secondly, skewness swap returns become especially pronounced following the

risk premium. Just as variance swap returns have been used to measure the variance risk premium (e.g.,
Carr and Wu 2009; Martin 2017), skewness swap returns capture the skewness risk premium. From a
hedging perspective, an investor seeking protection against negative skewness would sell the skewness
swap, thereby paying the skewness risk premium.

4



2007/2009 financial crisis. In fact, when the results are segmented into pre-crisis and

post-crisis subsamples, it becomes evident that skewness swap returns experienced a sig-

nificant right shift in distribution after the financial crisis. Moreover, a greater number of

stocks display statistically significant positive swap returns during this post-crisis period.

In addition to the increase in crash risk premium measured by skewness swap returns,

I also document an increase in the price of crash risk in individual stocks. This is re-

flected by a more left-skewed implied volatility smile, driven by a higher price of deep

out-of-the-money options.

Complementing this evidence, a portfolio sort analysis shows that swap returns are

higher for stocks with greater systematic crash risk and overvaluation risk, a relationship

that arises specifically in the post-crisis period. This pattern aligns with the broader

macroeconomic environment: the years between the financial crisis and the Covid-19

crisis were marked by exceptionally low interest rates, which encouraged reaching-for-

yield behavior and drove asset valuations higher (see, e.g., Hau and Lai (2016); Lian, Ma,

and Wang (2019)). These findings reinforce the idea that skewness swap returns reflect

the stock-level crash risk in the economy.

The paper is related to several strands of literature. The methodology implemented

is the skewness swap of Schneider and Trojani (2019), which provide a simple approach

to trading skewness in both the stock and option markets. This methodology is situated

within an extensive body of research that stems from the findings of Breeden and Litzen-

berger (1978) and Carr and Madan (2001).5 On the empirical front, numerous studies

5This research has led to the formulation of techniques for trading variance or entropy, and, more
broadly, higher-order moments using static option portfolios, see e.g., Carr and Wu (2009); Martin (2017);
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have explored the dynamics of variance swaps or variance portfolios applied to the market

and individual stocks (see e.g., Heston, Jones, Khorram, Li, and Mo 2022; Duarte, Jones,

and Wang 2023; Dew-Becker, Giglio, Le, and Rodriguez 2017; Aı̈t-Sahalia, Karaman,

and Mancini 2020; Filipović, Gourier, and Mancini 2016; Johnson 2017). In contrast, the

empirical investigation of skewness swaps has thus far only centered on skewness swaps

on the market index (Kozhan, Neuberger, and Schneider 2013; Or lowski, Schneider, and

Trojani 2023; Schneider and Trojani 2019).6

Furthermore, this paper is related to the broader literature exploring the risk pre-

mium associated with the skewness of individual stocks. Typically, individual stocks

exhibit positive skewness (Bessembinder 2018). However, the ex-ante measurement of

skewness has traditionally presented challenges, leading to a variety of methodologies

and occasionally conflicting findings. Notably, contradictory outcomes emerge when ex-

ante skewness is computed from stock returns versus the option market. For example,

Boyer, Mitton, and Vorkink (2010) find that stocks with the lowest expected idiosyncratic

skewness outperform those with the highest idiosyncratic skewness. In contrast, Stilger,

Kostakis, and Poon (2017) document that stocks exhibiting a greater ex-ante negative

skewness in the risk-neutral distribution tend to yield lower subsequent returns.7 The ap-

Schneider and Trojani (2019); Bondarenko (2014a); and Driessen et al. (2009) for trading correlation.
The methodology of Schneider and Trojani (2019) is nested into the results of Bondarenko (2014a), who
focus on variance trading but also provide a general result on how to trade a generic payoff.

6There is also a large literature that investigates crash risk and skewness risk in the S&P500 option
market with parametric or semi-parametric methodologies other than skewness swaps, see e.g., Andersen
et al. (2015b), Todorov (2010), Bates (1991), Bates (2012), Backus et al. (2011), and Welch (2016).

7Other relevant studies examining the pricing of individual skewness risk include Amaya, Christof-
fersen, Jacobs, and Vasquez (2015), who demonstrate that stocks with the lowest realized skewness
outperformed those with the highest realized skewness. Additionally, Schneider et al. (2020) establish
a connection between option-implied ex ante skewness and ex post residual coskewness, while Bali and
Murray (2013) identify a negative relationship between risk-neutral skewness and skewness in asset re-
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proach to skewness risk premium analysis outlined in this paper distinguishes itself from

prior research by not depending on conventional portfolio-based cross-sectional methods

intended to predict stock returns based on ex-ante skewness information. Instead, it em-

ploys an individualized trading strategy for each stock, specifically a skewness swap. The

returns generated by this strategy directly capture the difference between the P skew-

ness (skewness in the real-world measure), and Q skewness (skewness in the risk-neutral

measure) of each individual stock. The positive swap returns documented in this paper

align with investor preferences for positively skewed payoffs, as proposed in the model by

Barberis and Huang (2008) (see also Eraker and Ready 2015).

Finally, the paper is also related to the literature that connects crash risk and skewness

risk with overvaluation risk, as is done for example in Chen, Hong, and Stein (2001),

Stilger, Kostakis, and Poon (2017), and Rehman and Vilkov (2012).

The paper is structured as follows. Section 2 presents the methodology, while Section

3 provides an overview of the data used. Section 4 presents the principal findings: Sec-

tion 4.1 analyzes the distribution of swap returns, Section 4.2 compares skewness swap

returns with equity and variance swap returns, and Section 4.3 explores the post-financial

crisis period in detail. Section 5 includes the model-based and corridor-based versions

of skewness swaps as robustness checks. Finally, Section 6 concludes. The Appendix

includes the methodological details and proofs.

turns. Focusing on idiosyncratic risk, Bégin et al. (2020) and Gourier (2016) delve into the significant
pricing of idiosyncratic jump risk and variance risk, respectively. In contrast, Langlois (2020) find that
the role of idiosyncratic skewness risk is not as robust when compared to systematic skewness risk.
Turning attention to the financial crisis, Kelly, Lustig, and Van Nieuwerburgh (2016) and Battalio and
Schultz (2011) highlight the elevated pricing of put options on individual stocks during the sample period
of 2007-2009.
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2 Skewness Swaps: Theory and Implementation

A skewness swap is a trading strategy with which an investor can directly buy the skew-

ness of an asset and gain the skewness risk premium. The methodology employed in

this paper is an application of Schneider and Trojani (2019) but incorporates two mod-

ifications: i) isolating skewness from kurtosis, and ii) considering the early exercise of

American options. The econometric details and a convergence analysis are reported in

Appendix A and B, while this section only presents the intuition and the main formulas

used in the empirical section.

2.1 Background on Variance Swaps

Before introducing the skewness swaps, this section recalls some known results on variance

swaps. As outlined in Carr and Wu (2009), the payoff at maturity T to the long side of

the variance swap is equal to the difference between the realized variance over the life of

the contract, RVt,T , and a constant called the variance swap rate, SWt,T :

[RVt,T − SWt,T ] L,

where L denotes the notional dollar amount, and t is the start date of the contract. By

no arbitrage, SWt,T = EQ
t [RVt,T ], and the variance swap has zero net market value at

entry. The return on the strategy thus depends on the difference between the realized

variance RVt,T and the risk-neutral variance SWt,T and is a direct measure of the realized

variance risk premium.
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It is a known result that the swap rate can be measured at time t with the price of

a portfolio of options with maturity T (see e.g., Carr and Madan 2001; Carr and Wu

2009; Martin 2017, among others). The realized variance can be measured with the sum

of squared daily returns (Carr and Wu 2009), or by squaring the return over the time

period from t to T .8 The latter can be measured with the payoff of the option portfolio

employed in calculating the swap rate (see e.g., the variance portfolios in Heston, Jones,

Khorram, Li, and Mo 2022).

2.2 Skewness Swaps: Theory

The skewness swap is defined in a similar way to the variance swap. The payoff at

maturity T to the long side of the skewness swap is equal to the difference between the

realized skewness over the life of the contract, RSt,T ,9 and a constant called the skewness

swap rate, SSWt,T , which measures the risk-neutral skewness, times the notional L:

[RSt,T − SSWt,T ] L. (1)

Skewness portfolios can be constructed in different ways, depending on how realized

skewness and risk-neutral skewness are measured. For the baseline analysis, I implement

the simple swap methodology of Schneider and Trojani (2019), which extends the model-

8Because variance has the aggregation property of time, it holds EQ
0

[∑T
(δS)2

]
= EQ

0

[
(ST − S0)

2
]

if prices are martingales (see Neuberger 2012; Bondarenko 2014a). The third moment, instead, does not
have the time-aggregation property.

9In this context, realized skewness over the life of the contract refers to the cube of the return measured
from time t to T , as will be formally defined in Proposition 1.
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free methodology of Bakshi et al. (2003) to measure the swap returns of every moment of

the distribution.10 I postpone the analyses of more complex model-based and corridor-

based alternatives in the robustness Section 5.11

The structure of the swap strategy of Equation 1 involves a fixed leg (SSWt,T ) and a

floating leg (RSt,T ), which are exchanged at maturity between two counterparts. These

components are defined in Schneider and Trojani (2019) using the following general formu-

las, which can be applied to trade not only skewness but any moment of the distribution:

fixed legt,T =
1

Bt,T

(∫ Ft,T

0

Φ
′′
(K)Pt,TdK +

∫ ∞
Ft,T

Φ
′′
(K)Ct,TdK

)
(2)

floating legt,T =

(∫ Ft,T

0

Φ
′′
(K)PT,TdK +

∫ ∞
Ft,T

Φ
′′
(K)CT,TdK

)
︸ ︷︷ ︸

Payoff of the option portfolio

+
n−1∑
i=1

(
Φ
′
(Fi−1,T )− Φ

′
(Fi,T )

)
(FT,T − Fi,T )︸ ︷︷ ︸

Dynamic trading in the underlying

.

(3)

Pt,T and Ct,T are the prices of put and call options at time t with maturity T and

strike K, Bt,T is the zero-coupon bond with maturity T , and Ft,T is the forward price

at time t for delivery at time T . PT,T and CT,T denote the put and call option payoff at

10Bakshi et al. (2003) provide a static methodology to measure the standardized and non-standardized
risk-neutral moments, while Schneider and Trojani (2019) provide a methodology to trade non-
standardized moments. The two methodologies are closely related, and indeed the skewness swap rate
employed in this paper has a correlation of more than 90% with the price of the cubic contract of Bakshi
et al. (2003).

11A different set of skewness swap methodologies are those proposed by Kozhan, Neuberger, and
Schneider (2013) and Or lowski, Schneider, and Trojani (2023), in which the traded realized skewness
is the sum of daily cubed returns, i.e.,

∑
t r

3
t,t+1, which is different from the Bakshi et al. (2003) third

moment over the full period, i.e., r3
0,T . The methodologies that trade

∑
t r

3
t,t+1 involve a continuous

rebalancing of the option portfolio with consequent high trading costs. I therefore opt for the skew-
ness portfolio of Schneider and Trojani (2019) which involves a static option portfolio and a continuos
rebalancing only in the underlying asset.
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maturity, defined as max(0, K − ST ) and max(0, ST −K), respectively.

Equation 2 shows that the fixed leg is an option portfolio with weights given by the

function Φ
′′
, which determines the moment of the distribution traded with the swap (e.g.,

variance or skewness). Equation 3 shows that the floating leg is composed of two parts:

the payoff at maturity of the same option portfolio defined in Equation 2, plus a dynamic

trading strategy in the forward market, which is rebalanced on the n intermediate dates:

t < t1 < ... < tn−1 < tn = T . To simplify the notation, I denote Fti,T with Fi,T .

I implement the above swap strategy with a specific choice of the Φ function, which

makes the swap a trading strategy specifically designed to target skewness. This is

formally demonstrated in the following Proposition:

Proposition 1. The skewness swap S with the floating leg given by Equation 3 and the

fixed leg given by Equation 2 with

Φ(x) = ΦS

(
x

F0,T

)
= −24

(
x

F0,T

)1/2

log

(
x

F0,T

)
+24

[(
x

F0,T

)1/2
(

log

(
x

F0,T

)2

+ 8

)
− 8

]
(4)

verifies the following property:

fixed legΦS ,0,T
= EQ

0

[(
log

(
FT,T
F0,T

))3

+O

(
log

(
FT,T
F0,T

)5
)]

. (5)

Proof. See Appendix A.

Proposition 1 formally proves that, under the choice of the Φ function given by Equa-

tion 4, the leading term of the floating leg corresponds to the third non-standardized
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moment of the forward return distribution.12 This leg is independent of the first, second,

and fourth moments, while the error component is a function of the fifth moment.

To better visualize how the option strategy defined by Φ relates to the third moment,

Figure 1 plots the payoff of the option portfolio as a function of the forward return(
log
(
FT,T
F0,T

))
.13

[Figure 1 here]

The figure shows that the payoff accurately traces the cube of the return. The figure

also displays the payoff of the option portfolio implemented by Schneider and Trojani

(2019) and Schneider and Trojani (2015), which relies on a different choice of Φ function

based on the Hellinger distance.14 In this case the accuracy is lower, especially in the

tails of the distribution. Numerically, Appendix B shows that the gain in the convergence

of the skewness swap implemented in this paper over that implemented in Schneider and

Trojani (2019) can be as high as 20%, underscoring the importance of isolating the third

moment from the fourth.

2.3 Skewness Swaps: Implementation and Convergence

The fixed and floating legs of the swap contain a theoretical portfolio with a continuum

of options with strikes in the range [0,+∞]. However, only a finite number of strikes is

12The standardized and non-standardized third moments are both used in the literature as measures
of skewness. While they both have advantages and disadvantages, the choice of the non-standardized
skewness in this paper is dictated by the tradability of the skewness swap. The non-standardized skewness
is also consistent with the skewness preferences of Kraus and Litzenberger (1976).

13Note that the payoff of the option portfolio equals Φ(FT,T )− Φ(F0,T )− Φ
′
(F0,T )(FT,T − F0,T ) (see

Carr and Madan 2001).
14The Hellinger Φ3 function implemented in Schneider and Trojani (2019) is reported in Equation A.1

in the Appendix. It satisfies fixed legΦ3,0,T = EQ
0

[
1
6y

3 + 1
12y

4 +O(y5)
]
, where y = log(FT,T /F0,T ).
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listed on the options market. Thus, I implement the following discrete approximation.

Suppose that at time t there are N calls and N puts traded in the market. I order the

strikes of the calls such that K1 < ... < KMc ≤ Ft,T < KMc+1 < ... < KN and the strikes

of the puts such that K1 < ... < KMp ≤ Ft,T < KMp+1 < ... < KN . The integrals of the

fixed leg in Equation 2 are then approximated with the following quadrature formula:

fixed legt,T =
1

Bt,T

(
Mp∑
i=1

Φ
′′
(Ki)Pt,T (Ki)∆Ki +

N∑
i=Mc+1

Φ
′′
(Ki)Ct,T (Ki)∆Ki

)
(6)

where

∆Ki =


(Ki+1 −Ki−1)/2 if 1 < i < N

(K2 −K1) if i = 1

(KN −KN−1) if i = N

The floating leg in Equation 3 is composed of two parts: the payoff of the option

portfolio plus the delta hedge. The integrals of the option portfolio are approximated

with the same quadrature approximation outlined above; the delta hedge is implemented

each day ti, starting from day t1 (the day after the start date of the swap) until day tn−1

(the day before the maturity of the swap).

In Appendix B, I verify the numerical convergence of the discretized swap methodology

to the true skewness under the Merton jump-diffusion model. The results, shown in

Table B.1, indicate that the value obtained using just four call and four put options

deviates from the model-implied skewness by approximately 5%, demonstrating that the
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methodology achieves a high level of accuracy even with a small number of options.

Another empirical adjustment to the theoretical formulas is necessary because single-

stock options are American-style, meaning they can be exercised at any time before ma-

turity. To account for this and ensure the tradability of the skewness swap, I incorporate

quoted American option prices in the fixed leg formula and determine the option payoff

in the floating leg by evaluating the optimal exercise of these options daily, following

the market-based rule introduced by Pool et al. (2008). The accuracy of this American

version of the skewness swap in measuring skewness depends on the early exercise pre-

mium. In Section 4, I show that in this empirical setting, the error remains negligible,

as the skewness swap consists exclusively of out-of-the-money options. For a detailed

explanation of the construction of the American skewness swap, see Appendix A.

2.3.1 What is the Return on a Skewness Swap?

The payoff of the long side of a skewness swap is defined in dollars by Equation 1. The

return is then calculated by standardizing the payoff with respect to the capital required

for purchasing the fixed leg of the swap. Following the existing literature (e.g., Bali and

Murray 2013), I assume that investors must be fully collateralized in their short positions,

and I calculate the capital needed by summing all the positions of the fixed leg in absolute

value, i.e., capital = 1
Bt,T

(∫ Ft,T
0
| Φ′′(K) | Pt,TdK +

∫∞
Ft,T
| Φ′′(K) | Ct,TdK

)
.
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3 Data

This section describes the data sources, the data filtering, and the main variables used in

the empirical analysis.

Time Period and Roll-over of the Trading Strategies: I apply the skewness swap

to all the components of the S&P500 separately over the period from January 2003 to

December 2020. I fix a monthly horizon for the skewness swaps, starting and ending on

the third Friday of each month, consistent with the maturity structure of option data.

Because the issue of new options sometimes occurs on the Monday after the expiration

Friday, I take as the starting day of the swaps the Monday after the third Friday of each

month.

Security Data: The list of the actual components of the S&P500 is taken from Com-

pustat. This sample is merged with Optionmetrics and Center for Research in Security

Prices (CRSP), with the exclusion of the stocks for which there is not an exact match

between the daily close price reported by Optionmetrics, CRSP, and Compustat. The

data on the security prices and returns are taken from CRSP, while the data on firm

characteristics are taken from Compustat. After this selection, the sample consists of

835 stocks. The methodology requires the calculation of the forward price at time t for

delivery of the asset at time T . It is calculated as Ft,T = Ste
r(T−t) − AVD according to

standard no-arbitrage arguments, where r is the risk-free interest rate, St is the stock
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price at time t, and AVD is the accumulated value of the dividends paid by the stock

between time t and time T . The data on the dividend distribution and the risk-free

rate are taken from Optionmetrics. I consider only the periods in which stocks do not

distribute special dividends in order to avoid special behavior of stocks.

Options Data: The data on option prices and attributes for both single stocks and

the S&P500 index come from Optionmetrics. The following data filtering is applied at

the start of the swap: I include only options with positive open interest and exclude

those with negative bid-ask spreads, negative implied volatility, or a bid price of zero.

The swap is implemented only if at least two call options and two put options pass these

filters to construct the fixed leg. After filtering, each stock has an average of 100 monthly

swap returns over the full sample period, with approximately 10 to 12 options used in

each swap implementation.

FOMC Announcement Data: The information regarding interest rate announcements

from the Federal Open Market Committee (FOMC) is sourced from the Federal Reserve

Board’s website.15 The analysis exclusively incorporates meetings, both scheduled and

unscheduled, that have associated statement files. This selection criteria is applied be-

cause these meetings are the ones where discussions regarding potential interest rate

adjustments took place.

15Source: https://www.federalreserve.gov/monetarypolicy/fomc historical year.htm
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Start and End of the Financial Crisis 2007/2009: As in Kelly, Lustig, and

Van Nieuwerburgh (2016), I consider the start date of the crisis as August 2007 (the

asset-backed commercial paper crisis) and June 2009 as the end date of the crisis. The

COVID-19 recession is set to begin in February 2020, in line with NBER recession dating.

4 Empirical Results

The monthly returns from skewness swaps provide a means to assess the time-series and

cross-sectional aspects of skewness risk premiums in individual stocks. Section 4.1 ana-

lyzes the swap return distribution; Section 4.2 investigates the relation between skewness

swaps and equity and variance swap returns; and Section 4.3 analyzes the returns before

and after the 2007–2009 financial crisis.

4.1 Skewness Swap Returns

Skewness swaps are implemented independently each month for every individual stock

in the sample. As a result, each stock has its own time series of monthly swap returns.

Panel A1 of Table 1 presents the mean, median and annualized Sharpe ratio of the returns

of a value-weighted portfolio of skewness swaps on individual stocks. Each month, the

portfolio is constructed by including all individual skewness swaps, with weights propor-

tional to the market capitalization of each stock. For comparison, Panel A2 presents the

findings for the skewness swaps on the S&P500 index. Panel A3 analyzes the skewness

swap returns for each stock separately, and reports cross-sectional averages of mean and
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median skewness swap returns, along with the number of stocks exhibiting statistically

significant positive or negative swap returns.

[Table 1 here]

The results in Panel A are very strong across all three cases: the returns of skewness

swaps are positive, significant, and very high.

The average return of the portfolio of skewness swaps is 21.91% per month, yielding

a Sharpe ratio of 0.54 (Panel A1). Panel A of Figure 2 presents the histogram of these

portfolio returns. The distribution has a positive mean but it also exibits a negative

skewness. Indeed, the distribution has a very long left tail, which corresponds to months

in which the skewness swap returns are highly negative.

[Figure 2 here]

Panel B of Figure 2 presents the time series of the portfolio’s monthly returns, while

Panel C illustrates the cumulative growth of a one-dollar investment in a portfolio that

allocates each month 95% to T-bills and 5% to the skewness swap portfolio. On average

the return is positive, but the dispersion is huge: there are months in which the return

is below −100% or above +100%. The gain shares some similarities with the return on

selling insurance: on average it is profitable until the trigger event happens (a crash in

this case), at which point it generates large losses. For the swap strategy the risk is

even higher because the return can be less than −100% due to the short positions in

the portfolio of options. Two main crashes stand from the graph: the financial crisis
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of 2007-2009 and the COVID-19 crisis. These graphs show that the skewness swap is a

highly profitable and highly risky strategy. This is also reflected in the difference between

the mean and the median of the skewness swap portfolio returns in Table 1: due to these

rare crash events, the mean is much lower than the median. We can interpret the median

as the average return outside the crashes. From a hedging perspective, an investor who

wants to hedge against a drop in the skewness will sell the skewness swap, and the results

in Table 1 show that investors are willing to accept deep negative returns for this hedge.

The results for the skewness swap on the S&P500, reported in Panel A2, are consistent

with those documented in the existing literature,16 and demonstrate that the magnitude

of swap returns in individual stocks is considerably lower, approximately around half,

than the corresponding swap return on the S&P500. These results are consistent with

the hypothesis that investors are more concerned about market crash risk than crash risk

in individual stocks.

Panel A3 analyzes the cross-sectional distribution of skewness swap returns, confirm-

ing that S&P500 stocks predominantly exhibit positive and substantial skewness swap

returns. The average monthly swap return is 20.55%, comparable to the portfolio returns

in Panel A1. The mean return is significantly positive for 146 stocks, while the median

return is significantly positive for 673 stocks. Notably, no stocks display a statistically

significant negative mean or median swap return. Consistent with the portfolio results,

16The average monthly skewness swap return on the S&P500 implemented by Kozhan et al. (2013)
during the period 1996-2012 amounted to -42% (variable xs in their Table 1). The negative sign results
from their standardization using the risk-neutral skewness, which is negative, while my standardization
employs the absolute value of the risk-neutral skewness. Similarly, according to Schneider and Trojani
(2015), the Hellinger skewness swap applied to the S&P500 in the sample period 1990-2014 yielded an
average monthly payoff of approximately 0.0042 and an implied leg of -0.0075 (results in their Figure 9
for x = 0). This corresponds to a monthly return of approximately 56%.
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the median return exceeds the mean, due to occasional instances of extreme negative

returns.

Altogether, the results from Panels A1, A2, and A3 support the idea that investors

have a preference for positive skewness not only at the market level but also at the

individual stock level.

The table also provides the outcomes of three robustness checks. Panel B computes

the return of a skewness swap without the dynamic trading in the underlying asset in

the floating leg of Equation 3. The results show that, even without delta-hedging, the

returns of the skewness swaps are still highly positive and significant.

Panel C calculates the swap return while accounting for the bid-ask spread incurred

by investors. Optionmetrics provides quoted bid-ask spreads for each option at the close

of each trading day. Based on prior research showing that investors typically pay 40%

to 60% of the quoted option spread (see e.g., Muravyev and Pearson 2020), I adopt

a conservative approach to transaction costs. Specifically, for this analysis, I assume

investors pay 60% of the option bid-ask spread and 100% of the stock bid-ask spread.

Incorporating transaction costs significantly reduces the average return, underscoring

the bid-ask spread as a key friction that some investors pay while others profit from.

Nonetheless, for those fully paying the transaction costs, the mean swap return remains

10.58% for the swap portfolio (Panel C1) and 4.95% across the cross-section of stocks

(Panel C3). Even if the return for the portfolio is not statistically significant, 62 stocks

display significantly positive swap returns and only one significantly negative. Overall,

these results emphasize the positive returns of the strategy even after accounting for
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transaction costs.

Finally, Panel D computes the return of a skewness swap that uses synthetic European

option prices instead of the actual American option prices.17 Also in this case the returns

are still positive and significant.

4.2 Relation between Skewness Swaps, Variance Swaps, and

Stock Returns

In this section, I examine the interplay among skewness swaps, variance swaps, and stock

returns. The objective is to determine whether skewness swaps are fully explained by

variance swaps and equity returns or if they provide supplementary insights.

[Figure 3 here]

Figure 3 depicts the time-series of three cross-sectional quantiles (10%, 50%, and

90%) of skewness swap and variance swap returns for individual stocks.18 The figure also

highlights three significant crashes that resulted in deep negative returns for skewness

swaps: September 2008 (Lehman default), August 2011 (US credit rating downgrade),

and March 2020 (Covid-19 crisis). Corresponding to these events, variance swap returns

display major positive spikes. This is expected since, during crashes, volatility rises

17The synthetic European option prices are recovered with the Black–Scholes formula applied to the
implied volatility of the American option prices provided by Optionmetrics. This European swap is
not tradable, but its return is useful to measure the importance of the early exercise component in the
tradable American swap for individual stocks.

18The variance swap is a trading strategy with the same structure as the skewness swap but with port-

folio weights such that fixed legt,T,Φ2
' EQ

t

[(
log
(
FT,T

Ft,T

))2
]
. Following Schneider and Trojani (2015), I

implement the variance swap of Equation 2 with Φ function equal to Φ2(x/F0,T ) = −4((x/F0,T )0.5 − 1).
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while skewness generally drops. However, outside of these pivotal events, the negative

correlation between the two series is less evident.

[Table 2 here]

Table 2 compares skewness swap returns with equity returns (Panel A), and variance

swap returns (Panel B). It reports (i) the percentage of months in which equity or variance

swap returns share the same sign as skewness swap returns, and (ii) the R-squared from

regressing skewness swap returns on equity or variance swap returns. The analysis is

computed for the portfolio of swaps (Panels A1 and B1) and for the individual swaps,

for which the table reports cross-sectional averages and quantiles (Panels A2 and B2).

Finally, Panel C presents the R-squared from a regression of skewness swap returns on

equity returns, variance swap returns, and, to capture potential nonlinearities, the square

and cube of equity returns. Only the stocks with at least 100 swaps are included in this

analysis (401 stocks).

As expected, skewness swap returns tend to align with the same sign as equity returns

in most instances, 74% of the months on average for individual swaps and 82.71% for the

portfolio (see Panel A). The average cross-sectional R squared is 21.08% for individual

swaps and 45.90% for the portfolio, indicating that there is a substantial portion of the

variation in skewness swap returns unexplained by equity returns.

Similar observations hold when examining the relationship between skewness swap

returns and variance swap returns (Panel B). As expected, the variables display a negative

comovement, since they have the same sign for less than 30% of the months for both the
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individual and portfolio of swaps. While the R-squared are higher than in Panel A

(around 61% for the portfolio and an average of 41.2% for individual swaps), there is still

substantial variation left unexplained.

In the most stringent specification in Panel C, the R-squared are about 88% for

the skewness swap portfolio and an average of 67% for individual swaps. This is not

surprising, given that the specification also includes r2
i and r3

i which are proxies for

realized variance and skewness, respectively.

Figure 3 suggests that the R-squared reported above may be inflated by a few major

market crashes, during which skewness swap returns (and equity returns) decline sharply,

while variance swap returns surge.19 Excluding the six market crashes in the sample

(August 2008, October 2008, August 2011, February 2018, and March 2020) results in

a substantial decline in explanatory power, with the R-squared in the most stringent

specification dropping from 88% to 54%.20

Overall, this analysis highlights that, while skewness swap, variance swap, and equity

returns are correlated with the expected sign, especially during extreme market crashes,

the information in skewness swap returns is not spanned by these other variables.

4.3 Skewness Swap Returns After the Financial Crisis

The time-series graphs of Panels B and C in Figure 2 suggest that there is a substantial

increase in the skewness swap returns after the financial crisis.

19It is well known (see, e.g., Aı̈t-Sahalia and Xiu 2016) that the correlation between two time series
can differ substantially depending on whether jumps are included or excluded, with the latter capturing
the correlation in the continuous component of the series.

20Results available upon requests.

23



The period between the end of the financial crisis and the onset of the Covid recession

represents a distinct phase in financial markets. In response to the crisis, policymakers,

most notably the Federal Open Market Committee (FOMC), lowered interest rates to near

zero and maintained them at those levels for an extended period. This prolonged low-

rate environment, as widely documented in the literature (e.g., Hau and Lai 2016; Lian

et al. 2019), encouraged increased risk-taking and contributed to elevated asset valuations.

Indeed, following the crisis, the U.S. stock market surged, with valuations rising well above

historical levels, as also documented in the Federal Reserve’s 2018 Financial Stability

Report,21 and reflected in the time-series of Tobin’s q for the U.S. economy (see top

graph of Figure D.1 in the Appendix).

This section examines the distribution of skewness swap returns during this peculiar

period. First, it formally tests for differences in the distribution of returns between the

pre-crisis and post-crisis periods (Section 4.3.1). Second, it also documents changes in

the implied volatility smile (Section 4.3.2). Finally, it investigates whether post-crisis

skewness swap returns are particularly linked to systematic and firm-specific measures of

crash risk and overvaluation risk (Section 4.3.3).

4.3.1 Pre- versus Post-Crisis Swap Returns

[Table 3 here]

Table 3 reports the mean and median skewness swap returns for the periods before the

financial crisis (January 2003–July 2007) and after the financial crisis (June 2009–Febru-

21Source: 2018 Financial Stability Report, Board of Governors of the Federal Reserve System,
https://federalreserve.gov/publications/files/financial-stability-report-201811.pdf
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ary 2020). The average return of the skewness swap portfolio (Panel A) increases by

almost 50% in relative terms, from 26.17% to 38.32% after the crisis. The increase in the

median return is even more pronounced, from 29.27% to 51.43%. These results suggest

a post-crisis shift in the swap return distribution, characterized by a higher mean and

greater left skewness. The kernel densities, reported in the top graph of Figure 4, visually

confirm this change in the swap return distribution. A formal test for distribution differ-

ences is presented in the last column of Panel A in Table 3, which shows a statistically

significant Kolmogorov-Smirnov t-statistic.

The results for the S&P500 index swap, reported in Panel B, document a more modest

post-crisis increase of approximately 12% (from 71.20% to 80.28%).

[Figure 4 here]

Panel C completes the analysis and presents the cross-sectional averages of the mean

and median skewness swap returns for individual stocks. The mean rises from 6.98%

to 24.29%, while the median increases from 28.64% to 49.38%. Additionally, the num-

bers in parentheses indicate that before the financial crisis, only 172 (302) stocks had a

significantly positive mean (median) skewness swap return, whereas after the crisis, this

number rises to 311 (614).

Overall, these results indicate that, after the financial crisis, investors demanded a

much higher compensation for crash risk in individual stocks.
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4.3.2 Pre- versus Post-Crisis Implied Volatility Smile

The crash of October 1987 (i.e. the Black Monday) is considered a landmark event in

the history of the option market. The literature documented that following the Black

Monday, the implied volatility smile of the S&P500 index became asymmetric (see Bates

2000 and Rubinstein 1994, among others), due to the disproportionate increase in the

price of out-of-the-money put options compared to the price of out-of-the-money call

options. This new asymmetry, known as “smirk”, is commonly interpreted as evidence

of a pronounced aversion of investors to market crashes (see e.g., Bates 2000).

On the other hand, for individual stocks, early studies (see e.g., Bollen and Whaley

2004) using samples ending prior to the 2007-2009 financial crisis, document an overall

simmetry of the implied volatility smile. If the change previously documented in skewness

swap returns genuinely reflect a change in investors preferences and beliefs about stock-

specific crashes, I should also observe a smirk in individual stocks following the financial

crisis.

To test whether this is the case, I create pre- and post-crisis average smiles, following

the methodology in Bollen and Whaley (2004).22 The results, displayed in the bottom

graphs of Figure 4, distinctly reveal that, after the financial crisis, the implied volatility

22In detail, for each stock and day, put and call options with maturities up to one year are categorized
into five moneyness groups based on their deltas. Category 1 includes call options with 0.875 < ∆C ≤
0.980 and −0.125 < ∆P ≤ −0.020. Category 2 includes options with 0.625 < ∆C ≤ 0.875 and −0.375 <
∆P ≤ −0.125, category 3 includes options with 0.375 < ∆C ≤ 0.625 and −0.625 < ∆P ≤ −0.375,
category 4 includes options with 0.125 < ∆C ≤ 0.375 and −0.875 < ∆P ≤ −0.625, and finally, category
5 includes options with 0.020 < ∆C ≤ 0.125 and −0.980 < ∆P ≤ −0.875. Implied volatilities are
averaged within each category to obtain average daily implied volatility smiles. Finally, these daily
smiles are averaged across stocks in the pre-crisis and post-crisis periods to create the average pre-crisis
and post-crisis smiles depicted in the bottom graphs of Figure 4. To better illustrate the variation in
slopes, the pre-crisis smiles are shifted within the graph to align with the post-crisis smiles.
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smile became more asymmetric for individual stocks due to a pronounced increase in

the price of deep out-of-the-money put options (moneyness category 1). Indeed, the

average difference between the implied volatility of the most out-of-the-money puts and

calls increases from 5% to about 11% for individual stocks (more than a 100% increase),

and from 11% to 15% for S&P500 options (about a 35% increase). While the change is

statistically significant at the 1% level in both cases, it is relatively smaller in magnitude

for S&P500 options.

These results are consistent with those based on skewness swap returns, and further

confirm an increased concern among investors for stock-specific crashes.

4.3.3 The Cross-Section of Swap Returns After the Crisis

This section investigates the cross-sectional dynamics of skewness swap returns across the

pre- and post-crisis subsamples. Given the distinctive features of the post-crisis environ-

ment, characterized by persistently low interest rates and elevated asset valuations, the

analysis focuses on whether exposures to systematic crash risk and firm-specific overvalu-

ation risk are reflected in skewness swap returns during this period.23 Specifically, it tests

whether stocks with higher exposure to these risks earn higher average swap returns, and

how these relationships differ across the two periods.

I consider the following measures of systematic crash risk exposure. First, for each

stock i, I regress the skewness swap return time series rsk,i,t on the market skewness

23Table E.3 in the Appendix shows a general increase in skewness swap returns following Federal
Reserve rate cuts, further supporting the view that interest rate levels have an important effect on
individual swap returns.
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swap return rsk,S&P500,t and its square r2
sk,S&P500,t. The regression coefficients βi,swap,1

and βi,swap,2 serve as the first two systematic risk exposures considered. Following Duan

and Wei (2009), I also consider the regression R squared, which captures the proportion

of systematic variance in the total variance of each swap, denoting it as SysRiskPropi.
24

I then consider the tail beta proposed by De Jonghe (2010), which quantifies the prob-

ability of a stock price crash conditional on a crash in the market index.25 I calculate

these systematic crash risk measures for each stock separately for the pre- and post-crisis

periods, and I sort the stocks into quartiles according to each measure.

[Table 4 here]

Panel A of Table 4 reports the average skewness swap return for each portfolio and

for the difference portfolio. T-statistics for the difference portfolio are computed using

the Newey and West (1987) correction method with the optimal lag length suggested

by Andrews and Monahan (1992). The results show that, while none of the systematic

crash risk measures are correlated with skewness swap returns in the pre-crisis period,

two measures, systematic risk proportion and tail beta, are significantly correlated with

skewness swap returns in the post-crisis period. Stocks with higher systematic risk pro-

portion and higher tail beta earn higher skewness swap returns, with a clear monotonic

pattern.

24Duan and Wei (2009) show that, under a standard factor model for stock returns, the level and
slope of the implied volatility smile for individual stocks are more closely related to the proportion of
systematic risk than to individual betas. This builds on results from Bakshi et al. (2003), who link the
higher-order risk-neutral moments of individual stocks to those of the market.

25I estimate the tail beta for each stock using the extreme value theory approach of De Jonghe (2010).
This method involves transforming stock and market returns into unit Pareto marginals, then estimating
the tail index of their joint probability distribution using the Hill estimator. The tail region is defined
by a crash probability of p = 0.04%, following De Jonghe (2010).
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Panel B of Table 4 presents the results for firm specific carachteristics that are most

likely to reflect the stock’s crash risk. First, following the literature linking overvaluation

to increased crash risk (see, e.g., Abreu and Brunnermeier 2003; Hong and Stein 2003),

I consider three standard measures of overvaluation: i) the logarithm of the book-to-

market ratio (BM), ii) the logarithm of company’s Tobin’s q, and iii) the maximum daily

return of the stock over the preceding month (MAX), as outlined in Bali et al. (2011).26

Second, following the literature linking the put option market to crash risk (see e.g.,

Carr and Wu 2011), I consider (i) the number of put options traded at the start of the

swap, denoted as Np, and (ii) the moneyness of the most out-of-the-money put option

traded, which I calculate as min(K/F0,T ), where K is the strike price of the put option

and F0,T is the forward price at time 0 for delivery at time T. The first measure reflects

the overall activity in the put market, while the second captures the depth of downside

protection sought by investors, with lower values indicating a higher demand for deep

out-of-the-money puts. Finally, I consider the risk-neutral variance of the stock, denoted

as Qvar, which is computed using a portfolio of options as described in Section 4.2.

Each month, I sort stocks into quartiles based on the variables above calculated at the

start of the month. Panel B of Table 4 reports average swap returns for each portfolio and

the difference portfolio in the pre- and post-crisis subsamples. The results show that, in

the post-crisis period only, overvaluation measures emerge as significantly correlated with

skewness swap returns: stocks with lower book-to-market ratios and higher Tobin’s q earn

26The Tobin’s q and book-to-market ratio are computed using the Compustat variables as fol-
lows: i) Tobin q = (atq+(prccq*cshoq)-(seqq+txditcq-pstkq))/atq, and ii) BM = (seqq+txditcq-
pstkq)/(prccq*cshoq). As these measures are recorded quarterly in Compustat, I consider the last value
recorded prior to the start of the swap.
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higher returns, with a clear monotonic pattern. MaxRet is mildly negatively correlated

with swap returns, consistent with Bali et al. (2011), suggesting it captures short-term

overpricing that is corrected in the following month. Instead, BM and Tobin’s q appear

to reflect more persistent overvaluation. Trading activity in the put option market is

significantly related to skewness swap returns in both samples: stocks with a higher

number of put options traded and deeper out-of-the-money puts exhibit higher swap

returns, reinforcing the idea that the put option market provides meaningful information

about a firm’s crash risk. Finally, risk-neutral variance is related to skewness swap returns

in the post-crisis period only and with a negative sign, further highlighting that variance

and skewness capture different dimensions of risk.

In summary, the findings of this section indicate that skewness swap returns are par-

ticularly high during the post-crisis period, where they appear to be positively correlated

with exposures to both systematic and firm-specific crash risk, as well as overvaluation

risk. These results suggest that skewness swap returns capture the stock-level crash risk

prevailing in the economic environment.

5 Robustness Checks

Options are not available for all strike values, and moneyness coverage varies across

months. This section addresses this limitation by implementing two robustness checks

to examine skewness swap returns before and after the financial crisis while maintaining

a constant moneyness range. First, I compute the return of a model-based skewness
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swap with a fixed moneyness range and a fixed number of options. Second, following the

literature on corridor swaps, I construct a corridor-version of the skewness swap using

different corridor values.27

In both of these alternative specifications, the results align consistently with the earlier

findings: swap returns exhibit positivity, notably high values, and a post-financial crisis

increase.

5.1 The Model-based Skewness Swap

As a first robustness check, I introduce a model-based version of the skewness swap. In

this approach, rather than relying on actual option prices, I utilize option prices derived

from a fitted model. I chose the Merton jump-diffusion model of Merton (1976) as a

benchmark model due to its well-documented ability to fit short-term options and its

mathematical tractability (see e.g., Hagan, Kumar, Lesniewski, and Woodward 2002).

The dynamics of the stock under the Merton jump-diffusion model is as follows:

dst =

(
r − λκ− 1

2
σ2

)
dt+ σdWt + log(ψ)dqt (7)

where st is the logarithm of the stock price, r is the risk-free interest rate, σ is the

instantaneous variance, and qt is a Poisson process, independent from Wt, which equals

one when a jump occurs. I follow the standard assumptions that jumps occur within

dt with probability λdt, and that the jump size follows log(ψ) ∼ N(µ, δ2). Finally,

27For a review on the literature on corridor swaps see, for example, Carr and Lewis (2004), Lee (2010),
and Andersen et al. (2015a).
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κ = E[ψ − 1] represents the mean jump size.

The implementation of the skewness swap based on the Merton jump-diffusion model

consists of two main steps: (i) calibrating the model parameters to option prices at the

swap inception date, and (ii) constructing the swap using a regular grid of option prices

generated from the calibrated model. The details of the implementation are provided in

Appendix C. This approach ensures a consistent moneyness range and a fixed number

of options across different stocks and time periods. However, a key limitation is that the

model-based skewness swap is not tradeable.

[Table 5 here]

Panel A of Table 5 reports the mean and median return of the model-based portfolio

of swaps in the pre- and post- crisis samples. The results indicate that the mean (me-

dian) model-based skewness swap return is 22.97% (32.59%) before the financial crisis

and 29.43% (42.62%) after, representing a 20%–30% increase. The Kolmogorov-Smirnov

statistic confirms a shift in the distribution of swap returns between these periods. These

findings are consistent with the baseline analysis, though slightly smaller, likely due to

the smoother nature of model-derived option prices compared to actual market prices.

5.2 Corridor Skewness Swaps

In this section, I apply the corridor variant of Andersen et al. (2015a) to the skewness

swaps. Corridor swaps focus on price changes within a fixed moneyness range, applying a

consistent truncation rule to both swap legs. Varying the corridor range enables analysis
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of deep far out-of-the-money options’ impact on skewness swap returns.

In formulas, given a corridor [a, b], and a generating Φ function, the fixed leg and

floating leg of the corridor swap are defined as follows:

Corridor fixed legt,T =
1

Bt,T

(∫ min(b,Ft,T )

a

Φ
′′
(K)Pt,TdK +

∫ b

max(Ft,T ,a)

Φ
′′
(K)Ct,TdK

)
(8)

Corridor floating legt,T =

(∫ min(b,Ft,T )

a

Φ
′′
(K)PT,TdK +

∫ b

max(Ft,T ,a)

Φ
′′
(K)CT,TdK

)

+
n−1∑
i=1

(
Φ
′

a,b(Fi−1,T )− Φ
′

a,b(Fi,T )
)

(FT,T − Fi,T ).

(9)

The option portfolio in the fixed and floating leg has weights given by Φ
′′
(K) inside the

corridor and zero outside of the corridor, that is, out-of-the-money calls (puts) with strike

K > b (K < a) have no contribution in the skewness swap. The dynamic trading in the

underlying is rebalanced according to the function Φ
′

a,b, which is equal to Φ
′
(a) if x < a,

Φ
′
(x) if a ≤ x ≤ b, and Φ

′
(b) if x > b. In other words, the dynamic trading is rebalanced

only on price changes inside the corridor or on price changes from regions inside (outside)

the corridor to regions outside (inside) the corridor.

Panel B of Table 5 presents the mean and median returns for five corridor-based skew-

ness swaps. These corridors are defined as nested intervals around Ft,T , ranging from one

to five standard deviations away.28 The results consistently show positive returns across

all corridors except the first, which covers only one standard deviation.29 Skewness swap

28Mathematically, the n-th corridor, for n = 1, 2, 3, 4, 5, is given by [Ft,T e
−nσ

√
T−t, Ft,T e

+nσ
√
T−t],

where Ft,T is the forward price, σ is the at-the-money volatility, and T − t represents time to maturity.
Each corridor includes all options with strike prices within n standard deviations from Ft,T .

29The returns of the corridor swap covering one standard deviation are very noisy due to the limited
number of options within the narrow corridor.
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returns increase as the corridor widens, highlighting the crucial role of out-of-the-money

options in measuring the skewness risk premium. Additionally, for corridors spanning two

to five standard deviations, returns are higher in the post-crisis subsample. The widest

corridor, covering five standard deviations, aligns most closely with the baseline skewness

swap returns without corridor restrictions (Panel A of Table 3), as expected.

6 Conclusion

This paper examines the crash risk premium in individual stocks through the returns of

skewness swaps.

Similar to variance swaps, a skewness swap strategy involves taking positions in the

skewness of a stock by buying and selling out-of-the-money put and call options. The

return of this strategy captures the difference between the stock’s realized skewness and

its risk-neutral skewness, providing a tradable measure of the compensation investors

require for exposure to the risk of a sudden decline in skewness. Notably, this return is

independent of the first, second, and fourth moments, offering a pure bet on skewness.

I apply this strategy to the S&P500 index constituents from 2003 to 2020 and show

that skewness swap returns are positive and statistically significant. The findings are

robust across different implementations of the skewness swap strategy and indicate that

investors demand significant compensation for skewness risk in individual stocks, which

is not subsumed by compensation for variance risk.

The crash risk premium, measured by skewness swap returns, becomes particularly
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pronounced after the 2007/2009 global financial crisis. This shift also coincides with a rise

in the price of crash risk, as reflected in a more left-skewed implied volatility smile, driven

by higher prices for deep out-of-the-money options. A portfolio sort analysis further shows

that, in the post-crisis period only, skewness swap returns are positively correlated with

measures of systematic crash risk and overvaluation. These findings reinforce the idea

that skewness swap returns reflect the stock-level crash risk in the economy.

These results have broad implications for asset pricing. They highlight the importance

of measuring higher-order moments of return distributions and suggest that models in-

corporating skewness and tail risk provide a more complete framework for understanding

investor preferences.
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Figure 1. Payoff of the Skewness Swap Option Portfolio
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The figure illustrates the payoff of the skewness swap option portfolio as a function of the

forward return log
(
FT,T
F0,T

)
. For comparison, it also displays the payoff of the Hellinger skewness

swap option portfolio, as implemented in Schneider and Trojani (2019), along with the cubic

function log
(
FT,T
F0,T

)3
as a benchmark.
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Figure 2. Returns of the Portfolio of Skewness Swaps

Panel A: Histogram

Panel B: Monthly Time-Series

Panel C: Compound Return

Panel A shows the histogram of returns for the skewness swap portfolio in individual stocks,
as analyzed in Panel A1 of Table 1, while Panel B presents the time series of the same portfolio
returns. The sample period runs from January 1, 2003, to December 31, 2020. In Panel B, red
markers indicate months when returns dropped below -100%. Panel C depicts the growth of a
one-dollar investment in a portfolio partially allocated to the risk-free rate and skewness swaps.
Each month, 95% of the portfolio is allocated to one-month T-bills and 5% to the swap portfolio
strategy, with returns compounding over time. Shaded gray regions represent the financial crisis
and COVID-19 crisis periods.
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Figure 4. The Option Market Before and After the 2007-2009 Financial Crisis

The top graph presents the kernel density estimation of the return distribution for the portfolio
of skewness swaps before the financial crisis (Jan 2003–Aug 2007) and after the financial crisis
(June 2009–Feb 2020). The bottom graphs show the average implied volatility smile before
and after the financial crisis for both the cross-section of individual stocks (left graph) and the
S&P500 index (right graph). The implied volatility smile is constructed by grouping options
into five moneyness categories based on their deltas, following Bollen and Whaley (2004), and
averaging implied volatilities within each category. To better illustrate differences in slope, the
pre-crisis smile curves are vertically shifted so that the implied volatility of the at money options
(category 3) overlaps with that of the post-crisis smile, allowing for a clearer comparison of their
relative shapes.
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Table 1. Skewness Swaps on Individual Stocks.

Panel A of the table presents the mean and median monthly returns for a value-weighted port-
folio of skewness swaps on individual stocks (A1) and the skewness swap for the S&P500 index
(A2). Below the median, the table reports a confidence interval estimated using a bootstrap
technique with 2,000 bootstrap samples, while the t-statistic is shown below the mean. The
table also reports the annualized Sharpe ratio. Panel A3 reports the mean and median skewness
swap returns across individual stocks. The numbers in parentheses indicate the count of stocks
with statistically significant positive (N pos) or negative (N neg) swap returns. Panels B, C,
and D present variations of the baseline skewness swap calculation: Panel B excludes dynamic
trading in the underlying stock, Panel C incorporates transaction costs, and Panel D constructs
skewness swaps using synthetic European options (i.e., excluding early exercise), which is only
applicable to options on individual stocks. Only the stocks with at least 10 skewness swaps are
included in the analysis.

Panel A: Skewness Swap Returns

A1: Portfolio of Swaps A2: S&P500 Swaps A3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
21.91%∗∗ 47.99%∗∗∗ 0.54 54.37%∗∗∗ 91.06%∗∗∗ 0.79 20.55% 51.06%

tstat/CI (2.36) [39.12, 55.45] tstat/CI (3.35) [88.03, 93.77] N pos (146) (673)
N neg (0) (0)

Panel B: Without Dynamic Trading in the Underlying

B1: Portfolio of Swaps B2: S&P500 Swaps B3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
28.70%∗∗ 57.89%∗∗∗ 0.55 67.02%∗∗∗ 92.55%∗∗∗ 1.08 18.81% 49.11%

tstat/CI (2.19) [50.01, 65.78] tstat/CI (4.40) [89.97, 94.88] N pos (177) (690)
N neg (0) (0)

Panel C: With Transaction Costs

C1: Portfolio of Swaps C2: S&P500 Swaps C3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
10.58% 39.53%∗∗∗ 0.23 41.98%∗∗ 84.04%∗∗∗ 0.55 4.95% 39.80%

tstat/CI (1.02) [28.75, 44.92] tstat/CI (2.31) [80.59, 89.46] N pos (62) (611)
N neg (1) (0)

Panel D: Without Early Exercise

D1: Portfolio of Swaps D2: S&P500 Swaps D3: Individual Swaps

Mean Median Sharpe R. Mean Median Sharpe R. Mean Median
18.98%∗ 47.02%∗∗∗ 0.39 N/A N/A N/A 14.63% 50.64%

tstat/CI (1.66) [38.87, 54.99] tstat/CI N/A N/A N pos (139) (672)
N neg (0) (0)
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Table 2. Skewness Swap Returns, Equity Returns, and Variance Swap Returns.

The table presents statistics comparing skewness swap returns with equity returns (Panel A)

and variance swap returns (Panel B). Specifically, it reports: (i) the percentage of months in

which equity or variance swap returns share the same sign as skewness swap returns, and (ii)

the R-squared from regressing skewness swap returns on equity or variance swap returns. Panel

C extends this analysis by presenting the R-squared from a regression of skewness swap returns

on equity returns, its square, its cube, and variance swap returns. The analysis is conducted at

both the portfolio level (Panels A1, B1, and C1) and the individual stock level, where the table

reports cross-sectional averages and quantiles (Panels A2, B2, and C2). The analysis includes

stocks with at least 100 swaps, resulting in a total of 401 stocks.

Panel A: Skewness Swap Returns rsk,i and Equity Returns ri

A1: Portfolio A2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

% of months in which rsk,iri > 0 82.71% 74.00% 71.43% 74.19% 76.67%
R squared of rsk,i on ri (%) 45.90% 21.08% 12.19% 21.04% 29.57%

Panel B: Skewness Swap Returns rsk,i and Variance Swap Returns rvar,i

B1: Portfolio B2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

% of months in which rsk,irvar,i > 0 15.89% 27.82% 24.34% 27.67% 30.87%
R squared of rsk,i on rvar,i (%) 61.52% 41.12% 15.78% 38.17% 64.59%

Panel C: Regression of rsk,i on ri, r2
i , r3

i , and rvar,i

C1: Portfolio C2: Individual Swaps
of Swap

Mean q0.25 q0.50 q0.75

R squared of rsk,i on 88.82% 67.50% 52.63% 67.81% 84.01%
ri, r

2
i , r3i , and rvar,i (%)
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Table 3. Skewness Swap Returns Before and After the Financial Crisis

The table reports the mean and median returns for the portfolio of skewness swaps (Panel A),
the skewness swap on the S&P500 index (Panel B), and the cross-sectional mean and median
of individual swap returns (Panel C). These statistics are reported separately for the periods
before the financial crisis (Jan 2003 – Aug 2007) and after the financial crisis (June 2009 – Feb
2020). Below the mean, the corresponding t-statistic is provided, while below the median, the
1% confidence interval is reported, computed using a bootstrap technique with 2000 bootstrap
samples. The last column in Panels A and B reports the Kolmogorov-Smirnov test statistic,
assessing differences in the return distributions between the pre- and post-crisis periods. In
Panel C, the numbers in parentheses indicate the count of stocks with statistically significant
positive and negative swap returns.

Panel A: Portfolio of Skewness Swaps

Before FC After FC

Mean Median Mean Median KS Test Statistic

26.17%∗∗∗ 29.27%∗∗∗ 38.32%∗∗∗ 51.43%∗∗∗ 0.30∗∗∗

tstat/CI (2.86) [20.56, 50.11] (6.88) [40.85, 62.00]

Panel B: S&P500 Skewness Swaps

Before FC After FC

Mean Median Mean Median KS Test Statistic

71.2%∗∗∗ 82.93%∗∗∗ 80.28%∗∗∗ 95.72%∗∗∗ 0.50∗∗∗

tstat/CI (11.09) [73.37, 87.18] (13.57) [92.11, 97.35]

Panel C: Individual Swaps

Before FC After FC

Mean Median Mean Median

6.98% 28.64% 24.29% 49.38%
N pos (172) (302) (311) (614)
N neg (17) (20) (1) (1)
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Table 4. Systematic and Firm-Specific Crash Risk

The table reports the results of a portfolio sort analysis of skewness swap returns based on
exposures to systematic crash risk, SysRiskProp, β1, β2, and tail beta (Panel A), as well as
firm-specific characteristics (Panel B), including the logarithm of the book-to-market ratio at
the beginning of each month (BM), Tobin’s Q, maximum return over the previous month (Max
Ret), minimum moneyness traded, number of put options traded (Np), and risk-neutral variance
(Qvar). The analysis is conducted separately for the pre-crisis period (Jan 2003–Aug 2007) and
the post-crisis period (June 2009–Feb 2020). The table displays the average skewness swap
return for each portfolio, along with the return of the difference portfolio. T-statistics for the
difference portfolio are computed using the Newey and West (1987) correction method, with
the optimal lag length selected according to Andrews and Monahan (1992).

Panel A: Systematic measures

Before FC After FC

Measure ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1 ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1

SysRiskProp 0.24 0.34 0.35 0.21 -0.03 0.19 0.29 0.31 0.33 0.14∗∗

Tail beta 0.29 0.28 0.27 0.25 -0.04 0.19 0.27 0.31 0.36 0.17∗∗∗

β1 0.28 0.35 0.29 0.20 -0.08 0.25 0.34 0.31 0.20 -0.06
β2 0.13 0.35 0.29 0.31 0.17 0.24 0.32 0.30 0.24 0.01

Panel B: Firm-specific measures

Before FC After FC

Measure ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1 ptf1 ptf2 ptf3 ptf4 ptf4 - ptf1

BM 0.31 0.25 0.25 0.28 -0.03 0.34 0.31 0.25 0.21 -0.13∗∗

Tobin Q 0.22 0.32 0.29 0.27 0.05 0.21 0.26 0.30 0.34 0.13∗∗

Max Ret 0.26 0.23 0.25 0.29 0.03 0.34 0.28 0.24 0.27 -0.07∗

Min Mon Traded 0.41 0.27 0.23 0.19 -0.23∗∗∗ 0.38 0.29 0.22 0.25 -0.13∗∗∗

Np 0.24 0.25 0.22 0.41 0.18∗∗∗ 0.18 0.27 0.34 0.38 0.19∗∗∗

Qvar 0.26 0.26 0.26 0.33 0.07 0.36 0.31 0.23 0.23 -0.12∗∗
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Table 5. Robustness: The Model-based Skewness Swaps and the Corridor Skewness
Swaps.

The table presents the mean and median returns for the model-based portfolio of swaps (Panel
A) and the corridor-based portfolios of swaps (Panel B), separately for the periods before the
financial crisis (Jan 2003 – Aug 2007) and after the financial crisis (June 2009 – Feb 2020).
The last column reports the Kolmogorov-Smirnov test statistic, which tests the difference in
return distributions between the pre- and post-crisis periods. The model-based skewness swap
is constructed at each swap start date using option prices generated from the Merton jump-
diffusion model that best fits the data. The corridor swaps are implemented following Andersen
et al. (2015a), with five corridor choices defined as K ∈ [Ft,T e

−SDσ
√
T−t, Ft,T e

SDσ
√
T−t], where

SD ranges from 1 to 5, K is the strike price, Ft,T is the forward price, T − t is the time to
maturity, and σ is the at-the-money volatility. Below the mean, the corresponding t-statistic
is reported, while below the median, the 1% confidence interval is provided, computed using a
bootstrap technique with 2000 bootstrap samples.

Panel A: Model-based Portfolio of Swaps

Before FC After FC

Mean Median Mean Median KS Test

22.97%∗∗∗ 32.59%∗∗∗ 29.43%∗∗∗ 42.62%∗∗∗ 0.22∗

tstat/CI (3.31) [21.88, 43.16] (5.32) [32.68, 50.51]

Panel B: Corridor-based Portfolio of Swaps

Corridor Range Before FC After FC

Mean Median Mean Median KS Test

1SD 44.14% 10.07% -2.09% 16.91% 0.12
(1.20) [-3.72, 32.72] (-0.22) [-3.85, 22.19]

2SD 14.82%∗∗ 23.57%∗∗∗ 17.62%∗∗∗ 35.37%∗∗∗ 0.22∗

(1.99) [14.00, 35.50] (3.01) [22.60, 44.71]
3SD 17.14%∗∗ 27.17%∗∗∗ 25.5%∗∗∗ 40.94%∗∗∗ 0.21∗

(2.06) [19.82, 41.44] (4.02) [29.55, 51.86]
4SD 19.87%∗∗ 28.94%∗∗∗ 31.34%∗∗∗ 47.31%∗∗∗ 0.26∗∗∗

(2.51) [17.85, 43.83] (5.19) [35.25, 55.89]
5SD 21.99%∗∗∗ 29.17%∗∗∗ 34.95%∗∗∗ 49.78%∗∗∗ 0.28∗∗∗

(2.83) [20.18, 44.10] (6.06) [38.22, 58.42]
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A The Skewness Swaps

Background and Theory on Skewness Swaps

The skewness swap is a contract through which an investor can buy the skewness of an

asset by taking positions in options. At the contract’s initiation, the investor purchases a

portfolio of options, and upon the options’ expiration, she receives the payoff associated

with this option portfolio. The fundamental concept underpinning this contract is that

the price of the option portfolio quantifies the risk-neutral skewness of the asset, while

the option portfolio’s payoff plus a continuous hedging in the underlying stock market

quantifies the realized skewness of the asset. In essence, it functions akin to a swap

contract in which two parties agree to exchange a fixed leg, determined by the price of

the option portfolio, for a floating leg, determined by the payoff of the option portfolio

plus the hedge, at the contract’s maturity.

I build on the general divergence trading strategies of Schneider and Trojani (2019)

and Schneider and Trojani (2015) to construct the skewness swap implemented in this

paper. Schneider and Trojani (2019) introduce a new class of swap trading strategies

with which an investor can take a position in the generalized Bregman (1967) divergence

of the asset. The skewness can be seen as a special type of divergence, and Schneider and

Trojani (2015) propose a Hellinger skew swap for trading skewness. The swap developed

in this paper builds on the Hellinger skewness swap of Schneider and Trojani (2015) with

the following differences: (a) this skewness swap is a pure bet on the third moment of

the stock returns while being independent of the first, second, and fourth moments, and
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(b) the swap is applied directly to American options.

The swap consists of a fixed leg and a floating leg, which investors exchange at matu-

rity. These are defined by Equations 2 and 3 in the main text. A key part of the formulas

is the function Φ : R −→ R, which is a twice-differentiable generating function that de-

fines the moment of the distribution we want to trade. For example, if Φ(x) = Φ2(x) =

−4((x/F0,T )0.5−1), then fixed leg0,T = EQ
0 [log(FT,T/F0,T )2 +O(log(FT,T/F0,T )3)]. In this

example, Φ2 captures the second-order variation of the returns. The fixed leg0,T quantifies

the risk-neutral moment and is established at time 0, whereas the floating leg0,T measures

the realization of the moment between time 0 and time T , with its value known at time

T . It is worth noting that dividends do not affect the methodology because the modeled

return is the forward return y = log(FT,T/F0,T ) in which the dividends are included in the

calculation of F0,T . Equation 3 shows that the floating leg is composed of two parts: the

payoff of the option portfolio at maturity plus dynamic trading in the forward market,

which is rebalanced at the intermediate dates i. All the payments of the swap are made

at maturity, when the investors exchange the fixed leg with the floating leg. The value

of the swap at time 0 is zero, as EQ
0 [floating leg0,T ] = fixed leg0,T .

If the function Φ is

Φ(x) := Φ3

(
x

F0,T

)
= −4

(
x

F0,T

)1/2

log

(
x

F0,T

)
(A.1)

then

fixed legΦ3,0,T = EQ
0

[
1

6
y3 +

1

12
y4 +O(y5)

]
, (A.2)
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where y = log(FT,T/F0,T ). This is the Hellinger skewness swap proposed by Schneider

and Trojani (2015) for studying the third moment of the returns. However, the formula

A.2 shows that the swap depends theoretically on the fourth moment as well, and in

Section B of the Appendix I will show that this dependence could potentially lead to a

biased measure of the third moment.

The Skewness Swap Implemented in this Paper

To mitigate the reliance on the fourth moment, as discussed earlier, and enhance the

isolation of the third moment, I introduce a new skewness swap denoted as S. The

function ΦS for this swap is a fusion of Φ3 and Φ4, with Φ4 being the function that char-

acterizes the kurtosis swap in Schneider and Trojani (2015). In detail, Φ4

(
x

F0,T

)
=

−4
[
(x/F0,T )1/2(log(x/F0,T )2 + 8)− 8

]
and verifies fixed legΦ4,0,T = EQ

0 [ 1
12
y4 + O(y5)],

where y = log(FT,T/F0,T ). By taking a long position in 6 times Φ3 and a short posi-

tion in 6 times Φ4, I can construct a new simple skewness swap which does not depend

on the fourth moment anymore. The formal result is stated in Proposition 1 in the main

text, and I outline the proof below.

Proof of Proposition 1.

For every Φ:

fixed legΦ,0,T = EQ
0 [floating legΦ3,0,T ] = EQ

0

[∫ F0,T

0

Φ
′′
(K)PE,T,TdK +

∫ ∞
F0,T

Φ
′′
(K)CE,T,TdK

]

because EQ
i [FT,T − Fi,T ] = 0 for every i, and hence the conditional expectation of the
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second term of the floating leg defined by Equation 3 is zero.

By applying the result of Carr and Madan (2001) to our case, I obtain the following:

∫ F0,T

0

Φ
′′
(K)PE,T,T (K)dK+

∫ ∞
F0,T

Φ
′′
(K)CE,T,T (K)dK = Φ(FT,T )−Φ(F0,T )−Φ

′
(F0,T )(FT,T−F0,T ).

I substitute the definition of Φ of Equation 4, and with some calculations I obtain

Φ(FT,T )− Φ(F0,T )− Φ
′
(F0,T )(FT,T − F0,T ) =

= 72− (72FT,T )

F0.T

− 24

(
FT,T
F0.T

)0.5

log

[
FT,T
F0.T

]
+ 24

(
−8 +

(
FT,T
F0.T

)0.5
(

8 + log

[
FT,T
F0.T

]2
))

=

= 72− 72ey − 24ey/2y + 24(−8 + ey/2(8 + y2)) =

= y3 +O(y5),

where y = log(FT,T/F0,T ), and the last equality is obtained by substituting ey with its

power series expansion ey =
∑∞

n=0
yn

n!
.

American Versus European Skewness Swap

The preceding formulas for the skewness swap pertain to options with a European-style

exercise, meaning they can only be exercised at maturity. However, in the equity market,

European options are available only for indexes, while options on individual stocks are

American, allowing exercise at any point before maturity.

This section illustrates a straightforward adjustment to Equations 2 and 3 for crafting

a tradable skewness swap involving American options. The discrepancy stemming from

the use of American options instead of European options is a simple function of the early
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exercise premium, which, in this context, is negligible.

I start by defining the American call option payoff at time T :

CA,T,T =
(St∗ −K)

Bt∗,T

where t∗ = min{0 ≤ t ≤ T : (St∗ − K) > C(t∗, St∗ , K, T − t∗)}, and analogously, the

American put option payoff:

PA,T,T =
(K − St∗)
Bt∗,T

where t∗ = min{0 ≤ t ≤ T : (K − St∗) > P (t∗, St∗ , K, T − t∗)}. The idea is that the

investor exercises the American options optimally, and the final payoff at maturity is

given by the compounded optimal exercise proceeds.30

I define a new swap whose floating leg is given by

floating legA,0,T =

(∫ F0,T

0

Φ
′′
(K)PA,T,TdK +

∫ ∞
F0,T

Φ
′′
(K)CA,T,TdK

)

+
n−1∑
i=1

(
Φ
′
(Fi−1,T )− Φ

′
(Fi,T )

)
(FT,T − Fi,T )

(A.3)

30Many studies show that investors actually do not optimally exercise their stock options, and in par-
ticular they miss most of the advantageous exercise opportunities (see, e.g., Pool, Stoll, and Whaley 2008;
Barraclough and Whaley 2012; Cosma, Galluccio, Pederzoli, and Scaillet 2020; Bryzgalova, Pavlova, and
Sikorskaya 2022). This issue is important for in-the-money options, while here the skewness swap is
constructed using out-of-the-money options, for which the early exercise is less relevant. In the empirical
section, I show that, in my analysis, the early exercise value is very small, and hence an alteration of the
early exercise proceeds given by a suboptimal behavior would not alter the main results of the paper.
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and whose fixed leg is given by the expectation of the floating leg

fixed legA,0,T = EQ
0 [floating legA,0,T ] =

1

B0,T

(∫ F0,T

0

Φ
′′
(K)PA,0,TdK +

∫ ∞
F0,T

Φ
′′
(K)CA,0,TdK

)
.

(A.4)

The subscript A indicates that the prices are American option prices. The next propo-

sition shows that fixed legA,0,T equals fixed leg0,T plus the price of the early exercise and

that floating legA,0,T equals floating leg0,T plus the realization of the early exercise.

Proposition 2. The swap with fixed leg given by Equation A.4 and floating leg given by

Equation A.3 verifies the following properties:

fixed legA,0,T = fixed leg0,T +
1

B0,T

(∫ F0,T

0

Φ
′′
(K)(PA,0,T − PE,0,T )dK

)
+

+
1

B0,T

(∫ ∞
F0,T

Φ
′′
(K)(CA,0,T − CE,0,T )dK

)

floating legA,0,T = floating leg0,T +

(∫ F0,T

0

Φ
′′
(K)(PA,T,T − PE,T,T )dK

)
+

+

(∫ ∞
F0,T

Φ
′′
(K)(CA,T,T − CE,T,T )dK

)

The difference between the American and European prices (PA,0,T −PE,0,T ) and (CA,0,T −

CE,0,T ) measures the price of the early exercise. The difference between the payoff of

American and European options (PA,T,T − PE,T,T ) and (CA,T,T − CE,T,T ) measures the

realization of the early exercise.

Proof. The proof can be readily derived by simply adding and subtracting the European

option prices and payoffs in Equations A.4 and A.3, respectively.
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B Numerical Analysis: Convergence of the Skewness

Swap

This section delves into an examination of the accuracy of skewness swaps in measuring

the third moment of stock returns within the Merton jump-diffusion model.31 Within

this section, two convergence exercises are conducted. Firstly, I apply Equation 6 in the

main text with an increasing number of options to verify numerically that the skewness

swap accurately estimates the skewness of the stock as the number of options approaches

infinity. Secondly, while keeping a constant number of ten options (which aligns with the

average number used in empirical analyses), I assess the error magnitude when these ten

options span a wider range of moneyness levels.

The dynamics of the Merton (1976) model is described by Equation 7 in the main

text. The characteristic function is given by:

φ(u) = E[eiu(st−s0)] = et(i(r−0.5σ2−λκ)u−0.5σ2u2+λ(eiµu−0.5δ2u2−1))

31It’s worth noting that the selection of the Merton model is not limiting, as demonstrated in the work
of Hagan, Kumar, Lesniewski, and Woodward (2002), where it is shown that, for time horizons less than
one year, the implied volatility smile generated by the Merton model satisfactorily mirrors empirical
data.
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Figure B.1. Merton Implied Volatility Smile. The figure displays the one-month im-
plied volatility smile generated by the Merton model with the following set of representative
parameters: r = 0, µ = −0.05, δ = 0.08, σ = 0.2, λ = 3.

and the moments can be recovered from the property of the characteristic function:

E[(st − s0)k] = (−i)k d
k

duk
φ(u)|u=0.

As a result, the third moment can be expressed in closed form by the following formula:

E[(st−s0)3] = 3δ2λµt+λµ3t−3(−δ2λ−λµ2−σ2)(r+(−κλ+λµ−0.5σ2))t2+(r−κλ+λµ−0.5σ2)3t3.

I chose the following standard parameter values for the simulation study: r = 0, µ =

−0.05, δ = 0.08, σ = 0.2, λ = 3, t = 30/365. With these parameters, the Merton implied

volatility smile is left skewed, as shown in Figure B.1.

Convergence in the Number of Options
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Table B.1 shows the convergence of the fixed leg of the swap to the true model-based

third moment when the number of options used increases from 8 to 100. The fixed leg of

the swap is evaluated using Equation 6, with option prices derived analytically from the

Merton jump-diffusion model. The price of a call option is given by (see Merton 1976):

CMRT (0, t,K) =
∞∑
n=0

e−λ
′t+n log(λ′t)−

∑n
i=1 lognC(S0, K, rn, σn)

where λ′ = λ(1 + k), k = eµ+ 1
2
δ2 − 1, C(S0, K, rn, σn) is the Black-Scholes price of an

European call with volatility σn =
√
σ2 + nδ2

t
and risk-free rate rn = r − λk + n log(1+k)

t
.

The price of a put option is defined analogously. The initial stock price, denoted as S0, is

set at 100, and the options cover an evenly spaced range of strike prices from 50 to 150.

I evaluate the precision of two skewness swaps in this analysis. The first is the skewness

swap utilized in the empirical study of this paper, labeled as ΦS, where the Φ function

is defined by Equation 4. The second is the skewness swap originally introduced by

Schneider and Trojani (2015), referred to as Φ3, where the Φ function is defined by

Equation A.1.

Table B.1 illustrates the measurement errors as a percentage of the true skewness.

The third column reveals a consistent reduction in measurement errors as the number

of options increases, eventually stabilizing at around 0.7% to 0.8% when using twenty

or more options. It’s important to note that the error cannot reach zero due to its de-

pendence on the fifth moment in Equation 5. Nevertheless, the error magnitude remains

quite low, with an error of approximately 1.7% even with just 10 options. On the other
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Table B.1. Convergence in the Number of Options.

This table shows the convergence of the fixed leg of the trading strategy to the third mo-

ment of the asset returns when the number of options increases. The error is computed as

(|True moment − Strategy fixed leg|)/(|True moment|) and is displayed as a percentage. The

returns are assumed to follow a Merton jump-diffusion process with standard parameters, i.e.,

µ = −0.05, δ = 0.08, σ = 0.2, λ = 3, r = 0, t = 30/365. The true moment is computed in

closed form and is equal to −3.12 · 10−4. In the second column, I consider the skewness swap of

Schneider and Trojani (2015) with Φ = Φ3, while in the third column I consider the skewness

swap introduced in this paper with Φ = ΦS .

Number of options Error (%)

Φ3 ΦS

8 18.81% 5.16%

10 21.10% 1.70%

20 22.70% 0.72%

50 22.80% 0.86%

100 22.80% 0.87%

hand, the second column demonstrates the error of the skewness swap defined by Φ3,

which displays a more pronounced bias that persists even as the number of options in-

creases. This discrepancy arises from the error term’s dependence on the fourth moment,

which naturally holds greater significance than the fifth moment.

In summary, this analysis underscores the convergence of the skewness swap imple-

mented in this paper to the stock’s skewness within the Merton jump diffusion model.

It emphasizes the importance of isolating the third moment from the fourth moment for

achieving a precise measurement.
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Convergence in the Range of Moneyness

As a second convergence exercise, I check how the precision of the methodology depends

on the range of moneyness available. In this context, the moneyness of an option is

defined in standard deviations (SD) as log(K/F0,T )/(σ
√
T ), where K is the strike price,

F0,T is the forward price, σ is the at-the-money implied volatility, and T is the time to

maturity. In this exercise I maintain a constant number of options, set at 10, and assess

the error of the swap when these ten options span moneyness ranges of ±1SD, ±2SD,

±3SD, and ±4SD.32

Figure B.2 illustrates the results. Every quadrant i, where i = 1, ..4, illustrates the

part of the Merton implied volatility smile spanning ±iSD. Each plot provides a zoomed

out perspective compared to the previous one by 1SD. Positioned at the top of each graph

is the measurement error (expressed as a percentage of the true skewness) of a skewness

swap calculated using ten options spanning the corresponding moneyness range of ±iSD

as described above. The results show that the precision changes considerably depending

on the moneyness range available. At least three standard deviations are needed in order

to have an error around 10%, and four standard deviations are needed to have an error

around 1%.

32To illustrate, if the ten options encompass a moneyness range of ±1SD, their strike prices are

evenly distributed within the strike range of [F0,T e
−σ
√
T , F0,T e

+σ
√
T ]. Similarly, if the ten options

cover a moneyness range of ±2SD, their strike prices are evenly spaced within the strike range of

[F0,T e
−2σ
√
T , F0,T e

+2σ
√
T ], and so forth.
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Figure B.2. Convergence in the Moneyness Range
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This figure illustrates the volatility smile derived from the Merton jump-diffusion process, with
the following parameters: µ = −0.05, δ = 0.08, σ = 0.2, λ = 3, r = 0, and t = 30/365. The illus-
tration covers increasing moneyness ranges. In the first plot, a moneyness range of [−1SD, 1SD]
is considered, followed by the second plot with [−2SD, 2SD], the third with [−3SD, 3SD], and
finally, the fourth with [−4SD, 4SD]. Here, SD is defined as SD = log(K/F0,T )/(σ

√
T ), where

K represents the strike price, F0,T is the forward price, σ is the at-the-money implied volatility,
and T is the time to maturity. Each plot provides a zoomed-out perspective compared to the
previous one by 1SD. Within each moneyness range, the fixed leg of the skewness swap is
computed and compared to the true skewness derived through a closed-form expression. The
measurement error is presented at the top of each graph.
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C Model-based Skewness Swap

This section provides a comprehensive breakdown of the procedures entailed in con-

structing the model-based skewness swap, as employed in the robustness Section 5.1.

The implementation of the model-based skewness swap consists of two principal steps:

i) calibration of the Merton model, and ii) implementation of the swap based on the

calibrated model. These steps are detailed below.

Calibration

The model-based skewness swaps are implemented monthly, as the tradable skewness

swaps, and they start and end on the third Friday of each month. The months in which

the stocks pay dividends are excluded in order to simplify the calculation of the model-

based option prices. The model is recalibrated at each start date of the swap and for

each stock separately. In detail, at each start date of the swap t and for each stock

St, I consider all the out-of-the-money options with a maturity 30 days provided by

the Optionmetrics implied volatility surface file. This sample constitutes the calibration

sample. The benchmark model is the Merton jump-diffusion model with Gaussian jump-

size distribution, whose dynamics is given by Equation 7 in the main text. I then calibrate

the parameters of the model by minimizing the implied volatility mean squared error

(IVMSE) as

IVMSE(χ) =

n∑
i=1

(σi − σi(χ))2

where χ = {λ, µ, δ, σ} is the set of parameters to estimate, σi = BS−1(Oi, Ti, Ki, S, r)
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Table C.1. Calibrated Parameters of the Merton Jump-diffusion Model.

This table displays the average calibrated parameters of the Merton jump-diffusion model for the

cross-section of stocks. The model is calibrated separately for each stock, and it is recalibrated

monthly at each start date of the swap. The calibration sample includes all the out-of-the-money

options with a maturity 30 days quoted by the Optionmetrics interpolated volatility surface file

on the calibration day. The numbers displayed are the average calibrated parameters across

months and across stocks.

λ µ δ σ

Average across stocks 4.01 -0.13 0.20 0.24

is the market implied volatility provided by Optionmetrics, and σi(χ) =

BS−1(Oi(χ), Ti, Ki, S, r) is the model implied volatility, where Oi(χ) is the Merton model

price of the option i. The model implied volatility is obtained by inverting the Black–

Scholes formula, where the option price is given by the Merton model price. The choice of

the implied volatility mean squared error (IVMSE) loss function follows the argumenta-

tion of Christoffersen and Jacobs (2004), who show that the calibration made on implied

volatilities is more stable out of sample. Table C.1 displays the average calibrated pa-

rameters for the cross-section of stocks.

Implementation of the Model-based Swap

Following the calibration procedure outlined in the preceding step, the parameters

λ̂, µ̂, δ̂, σ̂ of the Merton jump-diffusion model are estimated individually for each stock

St on each starting date of the swaps, denoted as t. Subsequently, Merton option

prices are computed for a regularly spaced grid of strikes, covering the moneyness range
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[Ste
−4σ
√
T−t, Ste

4σ
√
T−t]. In this formula, σ is determined as the implied volatility of an

at-the-money option, represented as σ = BS−1(CMRT , T − t, St, St, r), where CMRT cor-

responds to the Merton price of a call option with a strike equal to St. The equispaced

grid is designed to include twenty out-of-the-money puts with strikes spanning the range

[Ste
−4σ
√
T−t, St], along with twenty out-of-the-money calls having strikes covering the

range [St, Ste
4σ
√
T−t]. The fixed leg of the swap, as defined in Equation 6, is then calcu-

lated using these model-derived option prices. The floating leg of the swap comprises the

total of the payoff from the same option portfolio and a continuous delta-hedge executed

in the forward market. The return of the swap is computed as outlined in Section 2.3.1

in the main text.
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D Additional Figures

Figure D.1. Overvaluation of the Stock Market After the Financial Crisis.

The upper chart presents the time-series of the Tobin’s q metric for the US economy. The data is
sourced from the FRED database operated by the Federal Reserve Bank of St. Louis, specifically
from the variable denoted as (Nonfinancial Corporate Business; Corporate Equities; Liability,
Level/1000)/(Nonfinancial Corporate Business; Net Worth, Level). The lower chart presents
the time-series of the average value of the fixed leg of the swaps across stocks, accompanied
by the corresponding time-series for the Federal Funds Rate. The data source for the Federal
Funds Rate is the H15 Report of the Federal Reserve accessed from Wharton Research Data
Service (WRDS). The regions in gray highlight the financial crisis and Covid-19 recessions, as
officially defined by the National Bureau of Economic Research (NBER).
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E Additional Tables

Table E.1. Skewness Swap Returns Around FOMC Announcements.

The table reports the results of a panel regression examining changes in skewness swap returns

following FOMC announcements. The analysis covers announcements from 2004 to 2020, includ-

ing 151 instances where interest rates were on the agenda. The dependent variable ∆rsk,i,FOMCt

measures, for each stock i, the change in the return of the first swap following the FOMC date

relative to the last swap before the announcement. This variable is regressed on the interest rate

decision, IRFOMCt , and its interaction with two dummy variables: 1IRFOMCt<0, which equals

one when the Federal Reserve lowers rates, and 1IRFOMCt>=0, which equals one when rates are

held constant or increased. Standard errors are clustered at both the stock and time levels.

Panel Regression of ∆rsk,i,FOMCt

IRFOMCt -0.026∗∗

(-2.28)
1IRFOMCt

>=0 · IRFOMCt -0.006

(-0.70)
1IRFOMCt

<0 · IRFOMCt -0.029∗∗

(-2.16)

Stock fixed effect Y Y
Year fixed effect Y Y

R squared (%) 1.33 1.52
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